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Tehnološka dolina smrti kot samoporarajoči evolucijski fenomen
program magistrskega dela

Prepričanje, da naravna selekcija podpira veristična zaznavanja, t. j. tista, ki bolj

natančno prikazujejo okolje, je razširjeno tudi med raziskovalci. Utemeljeno je s pred-

postavko, da so organizmi, katerih zaznave so bolj veristične, tudi bolj uspešni v okolju

[1]. Ta predpostavka je bila testirana z uporabo standardnih orodij evolucijske teorije

iger v poenostavljenem okolju. Rezultat je bil, da bolj veristične percepcije niso nujno

bolj uspešne. Veristične zaznave v pretežnem delu prostora parametrov izumrejo v

tekmi s poenostavljenimi zaznavami, ki vodijo v adaptivno vedenje, prilagojeno nara-

vni selekciji v danem okolju [2]. V magistrskem delu povzamemo rezultate omenjenih

bazičnih raziskav, ki jih nadgradimo s primerjavo vseh možnih strategij, ki smo jih

razdelili v dve skupini: tiste, katerih zaznave temeljijo na koristnosti virov in tiste,

ki temeljijo na veristični zaznavi količine virov. Navedeni taksonomski pristop je

podlaga za sistematično primerjavo vseh možnih kombinacij strategij v vseh možnih

okoljskih kontekstih (število virov, stabilnost okolja in število teritorijev).
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ABSTRACT

Perceptual researchers often argue that natural selection supports veridical perceptions, re-

spectively those that accurately reflect the environment. They also claim that beings whose

perceptions are truer are also more fit. This assumption was tested using standard tools

of evolutionary game theory in a simple environment. The result was that more veridical

perceptions are not necessarily more successful. In the majority of the parameter space,

veridical perceptions are extinct in competition with simplified perceptions, based on ad-

aptive behavior in a given environment. In the thesis, we build upon mentioned territorial

games introduced by Mark, Marion, and Hoffman in 2010, and extend four of their territory

perception and selection strategies with two novel ones that together constitute a model of

technological readiness valley of death. Whenever utility of a resource is not monotonous

in the amount of that resource, the technological valley of death emerges. While the devel-

opment of the science behind these models is in its infancy, modeling and understanding

the phenomenon may shed light on progress and related phenomena in society.

Keywords: evolution, perception, utility, Monte Carlo simulation, game theory.
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IZVLEČEK

Raziskovalci zaznav pogosto menijo, da naravna selekcija podpira veristična zaznavanja,

oziroma tista, ki bolj natančno prikazujejo okolje. Trdijo tudi, da so bitja, katerih doje-

manja so bolj resnična, tudi bolj uspešna. Ta predpostavka je bila testirana z uporabo

standardnih orodij evolucijske teorije iger za enostavno okolje. Rezultat je pokazal, da bolj

verodostojne percepcije niso tudi bolj uspešne. Zaradi naravne selekcije lahko veristične

strategije izumrejo v tekmi s strategijami, ki so prilagojene na zaznavanje neposredne kor-

istnosti možnih odločitev. Magistrsko delo gradi na omenjenih teritorialnih igrah, ki so jih

uvedli Mark, Marion in Hoffman v letu 2010. Njihove štiri percepcijske strategije selekcije

teritorijev razširimo z dvema novima, ki skupaj tvorita model tehnološke doline smrti.

Domnevamo, da se, kadar koristnost vira ni monotona funkcija količine tega vira, pojavi

tehnološka dolina smrti. Medtem ko so raziskave tega fenomena še v povojih, lahko mode-

liranje in razumevanje tega pojava osvetli napredek in z njim povezane pojave v družbi.

Ključne besede: evolucija, zaznave, koristnost, Monte Carlo simulacije, teorija iger.

Math. Subj. Class. (2010): 91A22 Evolucijske igre,
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Introduction

In this master’s thesis, we show how mathematical modelling can be applied to model

biological phenomena, and then how abstract models of biological phenomena can be applied

to reason about our understanding of life. We will ask about how useful is it that our

perceptions about world are accurate, veridical, in the sense of our models being isomorphic

to the factual structure of the world.

The relationship between our perception and the environment is explored by theory of

perceptions (D. Heyer, R. Mausfeld, [12], G. Radnitzky, [32], R. Schwartz, [35]). Several

results from 2010 onwards state that veridical perceptions of the world have little if any

chance of surviving evolutionary competition, which favors utilitaristic interface-like per-

ceptions, optimized to perceive the utility derived from the actions in a given environment

(D. D. Hoffman, [13]). Subsequent proof of the Invention of Symmetry Theorem (D. D. Hoff-

man, M. Singh, C. Prakash, [14]) stated that an observer who perceives the symmetry of

the world, may simply be deceived by the symmetry emanating from the compositum of

perceptions of the utility of results of actions upon the world, which would exhibit the

stated structure, but would be just an optimal interface to the true structure of the world

that could have a completely different structure. Scientific community responded grimly to

this pessimistic view (D. D. Hoffman, M. Singh, C. Prakash, [15]).

We report about further experiments in similar evolutionary contexts that have justified the

grim attitude mentioned above: the veridical perceptions do have a chance for evolutionary

survival, should they prove innovative, i. e. able to apply their veridical understanding of

the world into an innovation that outperforms the utilitaristic perceptions of the world.

However, they are outcompeted by innovative utilitaristic perceptions who take advantage

of both the innovation as well as true perception of its utility.

The competition of veridical with utilitaristic perceptions is hence an abstract mathematical

model behind the phenomenon of technology valley of death, which was perceived in the

documents of EU commission [7], based upon knowledge progress scale introduced by NASA

(J. C. Mankins, [21]). It is closely associated with product development (S. K. Markham,

S. J. Ward, L. Aiman-Smith, A. I. Kingon, [23]). Our model exhibits technology valley of

1
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death as an emergent evolutionary phenomenon in evolutionary environments in which the

agents’ model of the world is distinct from the true structure of the world, the utilities of

resources are non-monotonous in the amount of resources, and the agents are evolving their

perceptions (i. e. their model), their decision process, and their actions, gaining evolutionary

advantage over those who either perceive less realistically (thus unable to innovate) or less

utilitaristically (thus unable to maximize evolutionary utility of the innovations).

This master’s thesis is organised into 7 chapters.

We begin by introducing Technology Readiness Level and Valley of Death in Chapter 1.

Moreover, a brief overview of research of Valley of Death is given.

In Chapter 2, we establish the language and notation of measure theory. We center our

discussion on the measurable spaces, probability measure, Markov kernels and learning

space, which remain a key notion in this thesis.

In Chapter 3, we introduce a Minkowski spacetime and prove Noether’s Theorem.

Chapter 4 begins by defining the possible relations between the environment and an organ-

ism’s perceptions. Furthermore, we introduce the mathematical model of perception. We

also prove Invention of Symmetry Theorem.

In Chapter 5, we reproduce results of J. T. Mark et al. [22], who develop a simple evol-

utionary game between perceptual strategies with varying degrees of truthful perceptions.

The chapter explores these games with Monte Carlo simulations and finds that natural

selection favors perceptions that are tuned to utility rather than truthful representation of

the environment.

Furthermore, in Chapter 6 we define a new strategy; critical realist who has a possibility to

store surplus resources. Furthermore, we explore a competition between interface strategy

and critical realist with storage. We show that under special conditions, critical realist with

storage drives interface strategy to extinction.

In Chapter 7, we define another innovative strategy; an interface strategy with storage, and

we explore competition between innovative critical realist and innovative interface strategy.

We show that innovative interface strategy is the final evolutionary winner.



Chapter 1

Advancement and success of

knowledge from basic research to

widespread use

Technology is the application of scientific knowledge to solve practical problems, particularly

in industry. This chapter will first present the Technology Readiness Levels, a system used

to evaluate technology. In second section, an obstacle that appears during the application

of science for practical purposes entitled Valley od Death will be presented. Last section

consists of a brief overview of research about bridging the mentioned obstacle.

1.1 Technology Readiness Level

The Technology Readiness Level (TRL) is a method used to estimate the maturity of tech-

nology. For over 40 years, this method has been implemented in various industries. TRLs

help engineers to communicate the progress of development, specify deliverables and manage

risks. As TRLs have been embraced in more sectors, the initial domain of TRL applica-

tion has extended and difficulties in use have developed (K. Tomaschek, A. Olechowski,

S. Eppinger, N. Joglekar, [38]).

Any technological development can be related to a TRL between 1 (”we have noticed this

occurs, but we don’t understand why and how it happens”) and 9 (“this is used in real-life

applications on the market”) (P. Leitner, [19]). The concerete details of the stages between

them differ, but the Figure 1.1 shows the 9 TRL levels as seen by the European Commission

[7].

3
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Advancement and success of knowledge from basic research to

widespread use

Figure 1.1: Technology Readiness Levels. [Source: European Commission, [7]]

To take an example, research in computer science at universities falls mainly into TRL 2,

3 and 4. It could mature up to 5 in extremely rare cases. But the research never falls

into TRL 9 beacuse of the lack of publications to do. It is hard to publish that your tool

(which you have already proven conceptually accurate) will function in a appropriate demo

setting as well. It is a lot of hard work, with exceptionally small prompt advantage for the

academic (P. Leitner [19]).

On the other side, companies are for the most part interested into the products above TRL

7. They may have research departments operating on TRL 6, but because they do not

have the correct risk-reward ratio, they are uncommon. In theory, many of the academic

concepts in lower TRLs may be true, but their practical usefulness will still be hindered by

practical issues (P. Leitner [19]).

Figure 1.2: Valley of death. [Source: P. Leitner, [19]]



1.2 Valley of Death 5

Figure 1.2 shows why there is poor collaboration between industry and academics. Essen-

tially, both sides suppose that the other side will interface with them at the stage at which

they usually start/stop. The academic expects that the company will pick up their stuff

where research essentially stops and only trivial technical issues are to be solved, which is at

TRL 4. The company, on the other hand, assumes that they will receive technology at TRL

7 because there the risks of using new technology have been investigated and contained, and

it is shown that the technology can engage in business processes. None of those assumptions

will actually happen (P. Leitner [19]).

Obviously, there is a gap that prevents practitioners from selecting the academic ideas,

although some of them might be good. This gap is often called the Valley of Death.

1.2 Valley of Death

“Valley of Death” is the metaphor used to describe the gap between academic-based in-

novations and their market-based commercial applications. In other words, the valley is a

crossing between the formal roles, activities, and assets poured into research and the existing

formal development roles, activities, processes, and assets that leads toward commercializ-

ation. Although technology transfer definitions frequently assume a smooth transition of

intellectual property from research facilities to companies that commercially develop the

technology, the Valley of Death indicates that the practice is not as smooth. Indeed, this

rather grim metaphor implies that academic research is cut off from the outside world in

some manner (K. E. Gulbrandsen, [11]).

Figure 1.3: Valley of death. [Source: S. K. Markham, S. J. Ward, L. Aiman-Smith,
A. I. Kingon, [23]]
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widespread use

Figure 1.3 shows the resource availability on different levels of development. It demon-

strates that adequate resources are available during research but then often drop rapidly.

On the other side of the valley, resources appear again for developing ideas in order to enter

commercialization. As Figure 1.3 suggests, if an idea makes it through the valley from

research to development, there is adequate resource availability to take the idea to mar-

ket. The valley analogy represents a macro view of the structures, processes, people, and

resources associated with crossing the gap (S. K. Markham, S. J. Ward, L. Aiman-Smith,

A. I. Kingon, [23]).

1.3 A brief overview of Valley of death research

Many university and industry scientists are working together in order to cross the Valley of

death as they try to bring basic research to the market. In this section, we provide a brief

overview of the current research of Valley of death.

J. Hudson and H. F. Khazragui [16], researchers from the pharmaceutical industry, have

examined stress interaction between the various agents throughout the innovation process in

the UK, the EU and the USA using several specific examples, suggesting that collaboration

between industry and academia is still far from ideal and that the return for academia on

its research investment is extremely low.

Furthermore, Swedish researchers T. Lindström and S. Silver [20] conducted the research in

a Swedish company within the food science and agriculture. They examined the Valley of

Death as an obstacle that appears along the road to commercialization. They also identified

the aspects that need to be addressed in order to find out how to work around the barriers

to improve the success rate of commercialization.

Moreover, S. K. Markham, S. J. Ward, L. Aiman-Smith, A. I. Kingon, [23] define and

explain the front end of product innovation as a discrete segment of development between

research and product development. In their research, the Valley of Death is used as a

metaphor to describe the absence of resources and expertise in this stage of development.

The metaphor suggests that there are more resources on one side of the valley in the form

of research expertise and on the other side by commercialization expertise and resources.

Within this valley, overlapping roles that move projects from one side of Valley of Death to

the other are examined.

Danish researchers S. Debois, T. Hildebrandt, T. Slaats, M. Marquard [6] report on a suc-

cessful story in academic cooperation with industry: The development of a new technology,

all the way from its conception as a potentially interesting academic idea at the University

of Copenhagen, to its implementation in a commercial product accessible from Exformatics
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A/S proven in operational setting. Thanks to a strategic research project, the ideas were

realised into theoretical basis and a proof-of-concept prototype application was validated

in the laboratory. However, then they faced the well-known challenge of moving from the

laboratory to the real world, i. e. moving from TRL 5 to 7, also known as bridging the

”Valley of Death”. They identified the main conditions that made it possible to overcome

the challenge: The deployment of academic/industrial knowledge-networks; specific types

of smaller financing instruments and the ”industrial PhD”-model.

The European Commission is also explicitly addressing the Valley of Death in their Horizon

2020 programme. For instance, they have established PPP (Private-Public Partnership)

and the EIT (European Institute of Innovation and Technology) to explicitly bring tech-

nology through the Valley of Death and make them relevant to society faster (European

Commission, [7]).



Chapter 2

Measure theory

Measure theory is the study of measures. A measure on a set is a way for each suitable

subset of that set to be assigned a number, which is intuitively interpreted as its size.

In this context, a measure is a generalization of the concepts of length, area, and volume.

Measure theory was developed by Émile Borel, Henri Lebesgue, Johann Radon, and Maurice

Fréchet during the late 19th and early 20th centuries. The main applications of measures

are in the foundations of the Lebesgue integral, in Andrey Kolmogorov’s axiomatisation of

probability theory and in ergodic theory. In this chapter, we define σ-algebras, measurable

spaces, measures, probability measure and Markov kernels; structures used in mathematical

models we introduce in Chapters 5–7. Furthermore, we define complete metric space to

prove Banach Fixed Point Theorem on metric space in order to define learning space and

to prove Bounded Learning Theorem on the mentioned space. In last section, we present

short intro on group actions in order to prove Invention of Symmetry Theorem in Chapter

4.

2.1 Sets

In general, we can not define a measure of an arbitrary set of subsets of a given set. For that

reason, we will restrict the class of sets we consider. The class of sets that we want to use are

σ-algebras. General references used in this section are R. F. Bass [3], and M. Papadimitrakis

[29].

Definition 2.1. Let X be a non-empty set. An algebra is a collection A of subsets of X

such that

1. ∃ at least one A ⊂ X so that A ∈ A,

8



2.1 Sets 9

2. if A ∈ A, then Ac ∈ A, where Ac = X \A,

3. if A1, . . . , An ∈ A, then
⋃n
i=1Ai ∈ A.

A is a σ-algebra if in addition

4. whenever Ai ∈ A, ∀ i ∈ N , then
⋃+∞
i=1 Ai ∈ A.

From de Morgan’s laws, a collection of subsets is σ-algebra if it contains ∅ and is closed under

the operations of taking complements and countable unions (or, equivalently, countable

intersections).

Proposition 2.2. Every σ-algebra of subsets of X contains at least the sets ∅ and X, it

is closed under countable intersections, under finite intersections and under set-theoretic

differences.

Proof. Let A be any σ-algebra of subsets of X.

1. Since A is a σ-algebra, according to 2.1.1, there exists at least one A ∈ A. Take any

A ∈ A and consider the sets A1 = A and An = Ac, ∀n ≥ 2. Then X = A ∪ Ac =⋃∞
i=1Ai ∈ A and also X \X = ∅ ∈ A.

2. Let Ai ∈ A, ∀i. Then
⋂+∞
i=1 Ai = (

⋃+∞
i=1 A

c
i )
c ∈ A.

3. Let A1, . . . , AN ∈ A. Consider Ai = AN , ∀i > N and get that
⋃N
i=1Ai =

⋃+∞
i=1 Ai ∈

A. Then
⋂N
i=1Ai = (

⋃N
i=1A

c
i )
c ∈ A.

4. Finally, let A,B ∈ A. Using the result of 3., we get that A \B = A ∩Bc ∈ A.

Example 2.3. If X is a set, then {∅, X} and P(X) are σ-algebras on X; they are the

smallest and largest σ-algebras on X, respectively.

Proposition 2.4. Let A be a σ-algebra of subsets of X and consider a finite sequence

{Ai}Ni=1 or an infinite sequence {Ai} in A. Then there exists a finite sequence {Bi}Ni=1 or,

respectively, an infinite sequence {Bi} in A with the properties:

1. Bi ⊆ Ai for all i = 1, . . . , N or, respectively, all n ∈ N.

2.
⋃N
i=1Bi =

⋃N
i=1Ai or, respectively,

⋃∞
i=1Bi =

⋃∞
i=1Ai.

3. the Bn’s are pairwise disjoint.

Proof. Trivial, by taking B1 = A1 and Bk = Ak \ (A1 ∪ · · · ∪Ak−1), for all k = 2, . . . , N or,

respectively, all k > 2.
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Proposition 2.5. The intersection of any σ-algebras of subsets of the same X is a σ-algebra

of subsets of X.

Proof. Let {Ai}i∈I be any collection of σ-algebras of subsets of X, indexed by an arbitrary

non-empty set I of indices, and consider the intersection A =
⋂
i∈I Ai.

1. Since ∅ ∈ Ai, ∀i ∈ I, we get ∅ ∈ A and, hence, A is non-empty.

2. Let A ∈ A. Then ∀i ∈ I, A ∈ Ai and, since all Ai’s are σ-algebras, ∀i ∈ I, Ac ∈ Ai.
Therefore Ac ∈ A.

3. Let An ∈ A, ∀n ∈ N. Then ∀i ∈ I and all n ∈ N, An ∈ Ai and, since all Ai’s are

σ-algebras, ∀i ∈ I we get
⋃∞
n=1An ∈ Ai. Thus

⋃∞
n=1An ∈ A.

Definition 2.6. If A is any collection of subsets of a set X, then the σ-algebra generated

by A is

σ(A) =
⋂
{F ⊂ P(X) : A ⊂ F and F is a σ − algebra.} (2.1)

This intersection is non-empty, since P(X) is a σ-algebra that contains A, and an intersec-

tion of σ-algebras is a σ-algebra.

Proposition 2.7. Let F be any collection of subsets of the non-empty X. Then σ(F) is

the smallest σ-algebra of subsets of X which includes F . Namely, if A is any σ-algebra of

subsets of X such that F ⊆ A, then σ(F) ⊆ A.

Proof. If A is any σ-algebra of subsets of X such that F ⊆ A, then A is one of the σ-algebras

whose intersection is denoted σ(F ). Therefore σ(F ) ⊆ A.

2.2 Measurable space

In this section, we will define the space on a σ-algebra. General references used in this

section are R. F. Bass [3], and M. Papadimitrakis [29].

Definition 2.8. The pair (X,A) of a non-empty set X and a σ-algebra A of subsets of X

is called a measurable space.

The elements of A are called measurable sets. Several properties of measurable sets are

immediate from the definition:
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1. The empty set, ∅, is measurable.

Proof. Since A is non-empty, there exists some measurable set A. So, A \ A = ∅ is

measurable, by condition 2.2.4.

2. For A and B any two measurable sets, A ∩B, A ∪B, and A \B are all measurable.

Proof. The third is just condition 2.2.4. above. For the second, apply condition

2.1.3. to the sequence A,B, ∅, ∅, . . . . For the first, note that A ∪ B = A \ (A \ B):

Use condition 2.2.4. twice.

It follows immediately, by repeated application of these facts, that the measurable sets

are closed under taking any finite numbers of intersections, unions, and differences.

3. For A1, A2, . . . measurable, their intersection, ∩Ai, is also measurable.

Proof. First note that we have the following set-theoretic identity: A1∩A2∩A3∩· · · =
A1 \ (A1 \A2) ∪ (A1 \A3) ∪ (A1 \A4) ∪ . . .. Now, on the right, apply condition 2.2.4.

to the set differences, and condition 2.1.3 to the union.

Here are some examples of measurable spaces:

Example 2.9. 1. Let A be any set, and let A consist only of the empty set ∅. This is

a measurable space.

2. Let A be any set, and let A consist of all subsets of A. This is a measurable space.

3. Let (A,A) be any measurable space, and let K ⊂ S (not necessarily measurable). Let

K denote the collection of all subsets of K that are A-measurable. Then (K,K) is a

measurable space.

2.3 Measures

A measure is a countably additive, non-negative, extended real-valued function defined on

a σ-algebra. General references used in this section are P. Billingsley [5], and M. Papadi-

mitrakis [29].

Definition 2.10. Let (X,A) be a measurable space. A function µ : A → [0,+∞] is called

a measure on (X,A) if

1. µ(∅) = 0,
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2. µ(
⋃+∞
i=1 Ai) =

∑+∞
i=1 µ(Ai), ∀ sequences (Ai) of pairwise disjoint sets which are con-

tained in A. This property is called σ-additivity.

Definition 2.11. The triple (X,A, µ) of a non-empty set X, a σ-algebra of subsets of X

and a measure µ on A is called a measure space.

For simplicity, we shall say that µ is a measure on A or a measure on X.

Proposition 2.12. Every measure is finitely additive.

Proof. Let µ be a measure on the σ-algebra A. If A1, . . . , AN ∈ A are pairwise disjoint,

we consider Ai = ∅, ∀i > N , and we get µ(
⋃N
i=1Ai) = µ(

⋃+∞
i=1 Ai) =

∑+∞
i=1 µ(Ai) =∑N

i=1 µ(Ai).

Example 2.13. 1. The simplest measure is the zero measure which is denoted o and is

defined by o(A) = 0 for every A ∈ A.

2. Let X be an uncountable set and consider A = {A ⊆ X|A is countable or Ac is

countable}. We define

µ(A) =

0, if A is countable,

1, if Ac is countable.

Then it is clear that µ(∅) = 0. Let A1, A2, · · · ∈ A be pairwise disjoint. If all

of them are countable, then
⋃+∞
i=1 Ai is also countable and we get µ(

⋃+∞
i=1 Ai) = 0 =∑+∞

i=1 µ(Ai). Observe that if one of the Ai’s, say Ai0, is uncountable, then for all i 6= i0

we have Ai ⊆ Acio which is countable. Therefore µ(Ai0) = 1 and µ(Ai) = 0 for all

i 6= i0. Since (
⋃+∞
i=1 Ai)

c(⊆ Aci0) is countable, we get µ(
⋃+∞
i=1 Ai) = 1 =

∑+∞
i=1 µ(Ai).

Theorem 2.14. Let (X,A, µ) be a measure space.

1. (Monocity) If A,B ∈ A and A ⊆ B, then µ(A) ≤ µ(B).

2. If A,B ∈ A, A ⊆ B and µ(A) < +∞, then µ(B \A) = µ(B)− µ(A).

3. (σ-subadditivity) If A1, A2, · · · ∈ A, then µ(
⋃+∞
i=1 Ai) ≤

∑+∞
i=1 µ(Ai).

Proof. 1. We write B = A∪(B \A). By finite additivity of µ, µ(B) = µ(A)+µ(B \A) ≥
µ(A).

2. From both sides of µ(B) = µ(A) + µ(B \A) we subtract µ(A).

3. Using Proposition 2.4 we find B1, B2, · · · ∈ A which are pairwise disjoint and satisfy

Bi ⊆ Ai for all i and
⋃+∞
i=1 Bi =

⋃+∞
i=1 Ai. By σ-additivity and monotonicity of µ, we

get µ(
⋃+∞
i=1 Ai) = µ(

⋃+∞
i=1 Bi) =

∑+∞
i=1 µ(Bi) ≤

∑+∞
i=1 µ(Ai).
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Definition 2.15. Let (X,A, µ) be a measure space.

1. µ is called finite if µ(X) < +∞.

2. µ is called σ-finite if X =
⋃+∞
i=1 Ai is a countable union of measurable sets Ai with

finite measure, µ(Ai) < +∞.

2.4 Probability measure

Suppose that we have a random experiment with sample space Ω. Intuitively, the probability

of an event is a measure of how likely the event is to happen during the experiment. The

difference between a probability measure and the general definition of measure is that a

probability measure must assign value one to the entire probability space. In this section,

the main reference is P. Billingsley [5].

Definition 2.16. Let Ω be a non-empty set, which is called the sample space. Let A be a

σ-algebra of subsets of Ω, whose elements are called events. P is a probability measure on

A if

1. P is a measure on A,

2. P (Ω) = 1.

In particular, P is a finite measure. For any event A ∈ A, P (A) is called the probability of

A.

Since A is an algebra, that is, Ω ∈ A, the operation of taking complement is defined in A,

that is, if A ∈ A then the complement Ac := Ω \ A is also in A. The event Ac is opposite

to A and

P (Ac) = P (Ω \A) = P (Ω)− P (A) = 1− P (A). (2.2)

Definition 2.17. Let Ω be a sample space. If A is a σ-algebra in Ω and P is a probab-

ility measure on A, the triple (Ω,A, P ) is called a probability measure space, or simply a

probability space.

Example 2.18. Let Ω = {1, 2, ..., N} be a finite set, and A be the set of all subsets of Ω.

Given N non-negative numbers pi such that
∑N

i=1 pi = 1, define P by

P (A) =
∑
i∈A

pi. (2.3)
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From the condition (2.1), we have P (Ω) = 1.

For instance, in the case N = 2, A consists of the sets ∅, {1}, {2}, {1, 2}. Given two non-

negative numbers p and q such that p+ q = 1, set P ({1}) = p, P ({2}) = q, while P (∅) = 0

and P ({1, 2}) = 1.

Furthermore, we can generalize this example to the case when Ω is a countable set, for

example, Ω = N. Given a sequence {pi}+∞i=1 of non-negative numbers pi such that
∑+∞

i=1 pi =

1, define for any set A ⊂ Ω its probability by (2.1). Measure P constructed by (2.1) is called

a discrete probability measure, and the corresponding space (Ω,A, P ) is called a discrete

probability space.

2.5 Complete metric space

Another space we use in this chapter is complete metric space. Therefore, in this section,

we present a metric space, as well as a complete metric space. We use mentioned space in

Section 2.6 in order to prove Banach Fixed Point Theorem. Main references for this section

are A. Gonzalez [10], M. Searcoid [36] and S. Shirali, H. L. Vasudeva [37].

Let begin with the definition of a metric, which is, roughly speaking, a rule to measure the

distance between two elements from the same set:

Definition 2.19. Let X be a set. A metric on the set X is a function d : X ×X → [0,∞)

such that the following conditions are satisfied for all x, y, z ∈ X :

1. (Non-negativeness) d(x, y) ≥ 0,

2. (Identification) d(x, y) = 0⇔ x = y,

3. (Symmetry) d(x, y) = d(y, x),

4. (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z).

Definition 2.20. Given a set X and a metric d : X ×X → R on the set X, we say that

the pair (X, d) is a metric space.

The main purpose of this section is to give conditions for a space to be complete. First of

all, let recall the notion of Cauchy sequence.

Definition 2.21. Let (X, d) be a metric space. A sequence {xn}n∈N in X is a Cauchy

sequence if, for all ε > 0, there exists some M ∈ N such that

d(xn, xm) < ε, for all n,m ≥M. (2.4)
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Now let define the complete metric space:

Definition 2.22. Let (X, d) be a metric space. A metric space (X, d) is said to be complete

if every Cauchy sequence in X is convergent.

Proposition 2.23. In a complete metric space, a sequence is convergent if and only if it

is Cauchy.

Proof. First, let assume that (xn) is a sequence which converges to x. Let ε > 0 be given.

Then there is an N ∈ N such that d(xn, x) < ε
2 , for all n ≥ N . Let m,n ∈ N be such that

m ≥ N , n ≥ N . Then

d(xm, xn) ≤ d(xm, x) + d(xn, x) < ε
2 + ε

2 < ε.

It follows that (xn) is a Cauchy sequence.

On the other side, let assume that (xn) is a Cauchy sequence in a complete metric space.

Since metric space is complete, it follows by definition that (xn) is a convergent sequence

in the given complete metric space.

Proposition 2.24. Let (X, d) be a complete metric space and A ⊆ X. Then (A, d) is

complete if and only if A is closed.

Proof. Assume first that A is closed and {xn} is a Cauchy sequence in A, then {xn} is a

Cauchy sequence in X, so it converges to x0 ∈ X. Since A is closed, x0 ∈ A. This shows

that A is complete.

Now let assume that A is complete, but it is not closed. Then there exists a convergent

sequence in A whose limit does not belong to A. Since it converges, the sequence is Cauchy

and has a limit in X, but it doesn’t have a limit in A, so A is not complete, which is a

contradiction.

2.6 Banach Fixed Point Theorem

In this section, we present Banach Fixed Point Theorem (also known as the contraction

mapping theorem), which is an important tool in the theory of metric spaces. It’s import-

ance is in it guaranteeing the uniqueness and existence of fixed points of certain self-maps

of metric spaces. We use this theorem in Section 2.8. Main reference for this section is

S. Banach [2].
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Definition 2.25. Let (X, d) be a complete metric space. A map C : X → X is called a

contraction mapping on X if there exists q ∈ [0, 1) such that

d(C(x), C(y)) ≤ qd(x, y) (2.5)

for all x, y ∈ X.

Theorem 2.26. (Banach Fixed Point Theorem) Let (X, d) be a non-empty complete metric

space and let C : X → X be a contraction mapping. Then there exists a unique x∗ ∈ X

such that

C(x∗) = x∗. (2.6)

Remark. A method to find x∗: begin with an arbitrary element x0 ∈ X and define a sequence

xn by xn = C(xn−1). Then xn −→ x∗.

Proof. Let x0 ∈ X be arbitrary. We now define a sequence xn by setting xn = C(xn−1).

Then by induction on n and using the fact that T is a contraction mapping, we have the

inequality:

d(xn+1, xn) ≤ qnd(x1, x0), for all n ∈ N .

Now let show that xn is a Cauchy sequence. In particular, let m,n ∈ N such that m > n:

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + · · ·+ d(xn+1, xn)

≤ qm−1d(x1, x0) + qm−2d(x1, x0) + · · ·+ qnd(x1, x0)

= qnd(x1, x0)
∑m−n−1

k=0 qk

≤ qnd(x1, x0)
∑∞

k=0 q
k

= qnd(x1, x0)
(

1
1−q
)

Let ε > 0 be arbitrary, since q ∈ [0, 1), we can find a large N ∈ N so that

qN < ε(1−q)
d(x1,x0) .

Therefore, by choosing m and n greater than N we have:

d(xm, xn) ≤ qnd(x1, x0)
(

1
1−q
)
<
( ε(1−q)
d(x1,x0)

)
d(x1, x0)

(
1

1−q
)

= ε.

Thus, the sequence xn is Cauchy. Since (X, d) is a complete metric space, the sequence has

a limit x∗ ∈ X. Furthermore, x∗ must be a fixed point of C:

x∗ = limn→∞ xn = limn→∞C(xn−1) = C (limn→∞ xn−1) = C(x∗).
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As a contraction mapping, C is continuous, so we could bring the limit inside C.

Lastly, let show the uniqueness of a fixed point. C cannot have more than one fixed point

in (X, d), since any pair of distinct fixed points p1 and p2 would contradict the contraction

of C:

0 < d(C(p1), C(p2)) = d(p1, p2) > qd(p1, p2).

2.7 Markov kernel

Another mathematical object that we use is the Markov kernel, also called a stochastic

kernel, transition probabilities or a regular conditional probability distribution. It plays an

important role in probability theory and mathematical statistics. In this section, we recall

some useful facts about Markov kernels. Main references for this section are A. G. Nogales

[25], and P. Panangaden [28].

In the next, (Ω1,A1), (Ω2,A2),. . . denote measurable spaces. A random variable is a map

X : (Ω1,A1) → (Ω2,A2) such that X−1(A2) ∈ A1, ∀A2 ∈ A2. Its probability distribution

(or, simply, distribution) PX with respect to a probability measure P on A1 is the image

measure of P by X, i. e. the probability measure on A2 defined by PX(A2) := P (X−1(A2)).

Definition 2.27. Let (Ω1,A1) and (Ω2,A2) be measurable spaces. A Markov kernel M :

(Ω1,A1)→ (Ω2,A2) is a map M : (Ω1,A2)→ [0, 1] satisfying the following conditions:

1. ∀ω ∈ Ω1, M(ω, ·) is a probability measure on A2,

2. ∀A2 ∈ A2, M(·, A2) is A1-measurable.

Remark. Given two random variables Xi : (Ω,A, P ) → (Ωi,Ai), i = 1, 2, the conditional

distribution of X2 given X1, when it exists, is a Markov kernel M : (Ω1,A1) → (Ω2,A2)

such that P (X1 ∈ A1, X2 ∈ A2) =
∫
A1
M(ω1, A2)dPX1(ω1), for all A1 ∈ A1, and A2 ∈ A2.

We write PX2|X1=ω1(A2) := M(ω1, A2). Reciprocally, every Markov kernel is a conditional

distribution; namely, given a Markov kernel M1 : (Ω,A, P )→ (Ω1,A1), it is easily checked

that

M1(ω,A1) = (P ⊗M1)π1|π=ω(A1), (2.7)

where π : Ω×Ω1 → Ω and π1 : Ω×Ω1 → Ω1 are the coordinatewise projections and P ⊗M1

stands for the only probability measure on the product space (Ω × Ω1, A × A1) such that

(P ⊗M1)(A×A1) =
∫
AM1(ω,A1)dP (ω) for all A ∈ A and A1 ∈ A1.
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Definition 2.28. The image (or probability distribution) of a Markov kernel M1 : (Ω,A, P )→
(Ω1,A1) on a probability space is the probability measure PM1 on A1 defined by

PM1(A1) :=

∫
Ω
M1(ω,A1)dP (ω). (2.8)

Remark. Note that

PM1 = (P ⊗M1)π1 (2.9)

where π1 : Ω×Ω1 → Ω1 denotes the coordinatewise projection onto Ω1. So, if f : (Ω1,A1)→
IR is a nonnegative or PM1-integrable function, then∫

Ω1

f(ω1)dPM1(ω1) =

∫
Ω

∫
Ω1

f(ω1)M1(ω, dω1)dP (ω) =

∫
Ω×Ω1

f(ω1)d(P ⊗M1)(ω, ω1).

(2.10)

Definition 2.29. The composition of two Markov kernels M1 : (Ω1,A1) → (Ω2,A2) and

M2 : (Ω2,A2) → (Ω3,A3) is defined as the Markov kernel M2M1 : (Ω1,A1) → (Ω3,A3)

given by

M2M1(ω1, A3) =

∫
Ω2

M2(ω2, A3)M1(ω1, dω2). (2.11)

Definition 2.30. Let X1 : (Ω,A) → (Ω1,A1) be a random variable and M1 : (Ω1,A1) →
(Ω′1,A′1) a Markov kernel. A new Markov kernel M1X1 : (Ω,A) → (Ω′1,A′1) is defined by

means of

M1X1(ω,A′1) := M1(X1(ω), A′1). (2.12)

Remark. When MX1 is the Markov kernel corresponding to the random variable X1, we

have that M1X1 = M1MX1 .

2.8 Learning space

In addition to previous section, here we will define the space of all Markov kernels and a

metric on it. Furthermore, we will present an application of a Banach Fixed Point Theorem

on the mentioned space.

Definition 2.31. Assume that A and B are σ−algebras and that (X,A) and (Y,B) are

measurable spaces. The space of all Markov kernels from (X,A) to (Y,B) is called pre-

learning space L(X,A, Y,B).
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Proposition 2.32. Let L(X,A, Y,B) be the pre-learning space and K,K ′ ∈ L(X,A, Y,B).

Define d : L(X,A, Y,B)× L(X,A, Y,B)→ R by:

d(K,K ′) = max
x,B
|K(x,B)−K ′(x,B)|. (2.13)

Then d is a metric on L(X,A, Y,B).

Proof. Let us show that 2.11 is actually a metric. For any Markov kernels K,K ′ ∈
L(X,A, Y,B), ∀(x,B) ∈ X × B : |K(x,B) − K ′(x,B)| ≥ 0, so the maximum d(K,K ′)

of these is larger than or equal to zero as well. Also, ∀(x,B) ∈ X ×B : d(K,K ′) = 0 if and

only if |K(x,B)−K ′(x,B)| = 0, which means that K = K ′. Therefore, d satisfies the first

requirement in the definition of a metric.

For any K,K ′ ∈ L(X,A, Y,B) and for all (x,B) ∈ X × B, since |K(x,B) − K ′(x,B)| =

|K ′(x,B) −K(x,B)|, the maximum of |K(x,B) −K ′(x,B)| is the same as the maximum

of |K ′(x,B)−K(x,B)|, so d(K,K ′) = d(K ′,K), which is the second requirement.

Finally, suppose K,K ′,K ′′ ∈ L(X,A, Y,B). Then ∀(x,B) ∈ X×B: |K(x,B)−K ′′(x,B)| =
|K(x,B)−K ′(x,B) +K ′(x,B)−K ′′(x,B)| ≤ |K(x,B)−K ′(x,B)|+ |K ′(x,B)−K ′′(x,B)|
by the triangle inequality for the absolute value function on R. Furthermore, |K(x,B) −
K ′(x,B)| + |K ′(x,B) − K ′′(x,B)| ≤ maxx,B |K(x,B) − K ′(x,B)| + maxx,B |K ′(x,B) −
K ′′(x,B)| = D(K,K ′) + d(K ′,K ′′). This is the triangle inequality for d, so we conclude

that d is a metric on L(X,A, Y,B).

Definition 2.33. Let L(X,A, Y,B) be the pre-learning space. L(X,A, Y,B) is a learning

space if metric d is complete.

Definition 2.34. Let L(X,A, Y,B) be the learning space. L : L(X,A, Y,B)→ L(X,A, Y,B)

is a learning operator if L is a contraction (see Definition 2.24).

Theorem 2.35. Suppose that L is a learning operator over a learning space L(X,A, Y,B).

Then there exists a unique Markov kernel K in L(X,A, Y,B) such that iterative applications

of L converge to K.

Proof. The existence and uniqueness of such Markov kernel can be shown directly with the

Banach Fixed Point Theorem (2.20), since we have a suitable choice of the metric and since

the map L a contraction.

Theorem 2.36. Let L(X,A, Y,B) be a learning space and L a learning operator on L(X,A, Y,B).

Then there exists a Markov kernel which is maximal element of what L type learning can

teach an agent.

Proof. The proof follows directly from the definition of a metric (2.25) and Theorem 2.28.
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2.9 Group actions

In this section, we present a brief introduction to the Group theory, with emphasis on

group actions. This section is important, because it is used in the Invention of Symmetry

Theorem, proved in Chapter 4. Main reference for this section is M. Reeder [33].

Definition 2.37. A group G is a set equipped with a function, · : G × G → G, assigning

to each pair (a, b) of elements of G another element a · b ∈ G, satisfying the following three

axioms:

1. (associativity) a · (b · c) = (a · b) · c,∀a, b, c ∈ G,

2. (identity element) There ∃ an element e ∈ G such that a · e = e · a = a,∀a ∈ G,

3. (inverse) ∀a ∈ G, there ∃a−1 ∈ G such that a · a−1 = a−1 · a = e, where e ∈ G is an

identity element.

Definition 2.38. Let G an G′ be groups. A homomorphism of groups G,G′ is a function

f : G→ G′ satisfying

f(g1g2) = f(g1)f(g2), ∀g1, g2 ∈ G. (2.14)

Accordingly, f(1G) = 1′G and f(g−1) = f(g)−1, ∀g ∈ G.

Definition 2.39. The kernel of a homomorphism f : G→ G′ is the subset of G defined by

Kerf = {g ∈ G : f(g) = 1G′}. (2.15)

Definition 2.40. An isomorphism f : G→ G′ is a bijective group homomorphism.

Definition 2.41. A left coset of a subgroup H < G is a subset of G given by

gH = {gh : h ∈ H}. (2.16)

Two left cosets are either equal or disjoint; we have gH = g′H ⇔ g−1g′ ∈ H. The set of

left cosets of H ∈ G is denoted G/H, and is called the quotient of G by H. Analogously,

we define a right coset H \G as

Hg = {hg : h ∈ H}. (2.17)

Definition 2.42. Let X be a set. The symmetric group on X is the group SX of bijections

σ : X → X, where the group operation is composition of functions:

στ(x) = τσ(x). (2.18)
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The elements of SX are called permutations.

Definition 2.43. Let X be a set and G a group on X. A G-action on X is a homomorphism

φ : G → Sx from G into the group SX of permutations of X. lf φ is a G-action on X, we

say that G acts on X.

The pair (X,φ) is called a G-set or a G-action.

Definition 2.44. Let (X,φ) and (Y, ψ) be two G-sets. A function f : X → Y is called

G-equivariant if

f(φ(g)x) = ψ(g)f(x), ∀g ∈ G and x ∈ X. (2.19)

Definition 2.45. We say that (X,φ) and (Y, ψ) are equivalent G-sets if there exists a

G-equivariant bijection f : X → Y .

Definition 2.46. Let X be a set. The stabilizer or fixer of a point x ∈ X is the subgroup

of G given by

Gx = {g ∈ G : g · x = x} ≤ G. (2.20)

Definition 2.47. Let X be a set. The orbit of an element x ∈ X is the subset of X given

by

G · x = {g · x : g ∈ G}. (2.21)

Orbits are equivalence classes under the equivalence relation x ∼ y if y = g · x for some

g ∈ G. Since two orbits are either equal or disjoint; the orbits form a partition of X. We

write G X for the set of orbits.

Definition 2.48. A G-set on X is transitive if for all x, y ∈ X there exists g ∈ G such that

g · x = y. (2.22)

Equivalently, the action is transitive if and only if X consists of a single G-orbit. For a

general group action, each orbit is a transitive G-set.

Theorem 2.49. Let X be a set and G a group on X. If a group G acts on a set X, then

for each x ∈ X we have a G-equivariant bijection f : G/Gx → G · x, given by

f(gGx) = g · x. (2.23)
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Proof. Because ∀h ∈ Gx we have (gh) · x = g · (h · x) = g · x, the function f is well defined.

Next we show that f is a bijection. First, let show that f is an injection:

If g · x = g′ · x, then g−1g′ · x = x, so g−1g′ ∈ Gx, which means that gGx = g′Gx.

Furthermore, by the definition of the orbit G · x, the function f is surjective.

It is left to show that f is G-equivariant. For all g, g′ ∈ G and x ∈ X we have

f(g · g′Gx) = f(gg′Gx) = (gg′) · x = g · (g′ · x) = g · f(g′Gx).

Therefore, f is G-equivariant.



Chapter 3

Symmetry of Minkowski spacetime

The mathematics gives us an insight into how space and time are inseparably intertwined.

The most natural way to see this is in a representation of the world with four dimensions,

three spatial and one temporal. In this chapter, we introduce a Minkowski spacetime.

Furthermore, we prove the Noether’s Theorem. In the last section, we present symmetries

of Minkowski spacetime.

3.1 Minkowski spacetime

Minkowski spacetime (or Minkowski space) is a setting which combines three-dimensional

Euclidean space and time into a four-dimensional manifold. There, the spacetime inter-

val between any two events is independent of the inertial frame of reference in which

they are recorded. It was initially developed for Maxwell’s equations of electromagnet-

ism by mathematician Hermann Minkowski. Despite that, the mathematical structure of

Minkowski spacetime was shown to be an obvious consequence of the special relativity

axioms (L. D. Landau, [18]).

The Minkowski spacetime models the universe we live in, but it does not model the world

we percieve. Although we exist in Minkowski spacetime, we percieve the world as three-

dimensional Euclidean space with time as a parameter. These two spaces are closely related,

but their mathematical structure is quite different. In Euclidean space, the distance between

two points is measured by Euclidean metric, which uses the Pythagorean Theorem. Fur-

thermore, Newtonian physics also uses the Euclidean metric for space, but with time as a

parameter. On the other side, relativity uses the Minkowski metric to measure the distance

between two events in spacetime (E. Nešović, E. B. K. Öztürk, U. Öztürk, [24]).

23
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In general, an event is defined as a specific time and space location, for example, the place

where you are currently sitting. As already mentioned, spacetime is a manifold, defined as a

collection of all events. You may think of a manifold as a set of points with an approximate

local vector space structure. For instance, manifold is a smooth curve, which is a set of

points, where at each point, the curve is approximately the tangent line. At each point

on a smooth curve, there is an approximate local vector space structure (tangent line =

one-dimensional vector space). Moreover, a coordinate system is the function that maps a

point on a manifold to a vector in a vector space (E. Nešović, E. B. K. Öztürk, U. Öztürk

[24]).

Definition 3.1. (P. A. Quang, [31]) A metric tensor g on a smooth manifold M is a

symmetric nondegenerate (0, 2) tensor field on M . A smooth manifold M equipped with a

metric tensor g is called a Riemannian manifold.

We use 〈x, y〉 as an alternative notation for g, so that

g(x, y) = 〈x, y〉, (3.1)

in which x, y are tangent vectors.

Definition 3.2. (P. A. Quang, [31]) Minkowski spacetime (M,η) is the manifold R4
1 en-

dowed with the Minkowski inner product 〈, 〉. For a coordinate system (x0, x1, x2, x3), one

gets the components of the metric tensor g

gµν =
〈 ∂

∂xµ
,
∂

∂yν
〉

:= ηµν , (3.2)

where µ, ν = 0, 1, 2, 3.

In four-dimensional space, the coordinates of an event (ct, x, y, z) are the components of a

four-dimensional radius vector denoted by (x0, x1, x2, x3). Furthermore, origin, which is a

tangent vector in a tangent space at a fixed event can be expressed as

x =
∑
µ

xµ
∂

∂xµ
. (3.3)

For two tangent vectors x, y in M , their Minkowski inner product is then

g(x, y) = 〈x, y〉 := −x0y0 + x1y1 + x2y2 + x3y3 =
∑
µ,ν

ηµνx
µyν . (3.4)

An orthonormal basis for this inner product is then{ ∂

∂x0
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

}
. (3.5)
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We have presented Minkowski inner product. Now we present some basic properties of the

Minkowski spacetime. (P. A. Quang, [31])

Definition 3.3. The length of a vector x ∈ R4
1 has the form

∣∣x∣∣ =
√∣∣〈x, x〉∣∣. (3.6)

Definition 3.4. A vector x ∈ R4
1 is called:

1. timelike, if the inner product of x with itself is negative:

〈x, x〉 < 0, (3.7)

2. spacelike, if the inner product of x with itself is positive:

〈x, x〉 > 0, (3.8)

3. lightike, if the inner product of x with itself vanishes:

〈x, x〉 = 0, (3.9)

3.2 Noether’s Theorem

In essence, Noether’s Theorem states that when an action has a symmetry, it is possible

to derive a conserved quantity. In order to prove this theorem, we first have to define a

symmetry and a conserved quantity (W. S. Gang, [8]).

Definition 3.5. (D. Wheeler, [41]) Let C be an arbitrary compact region of spacetime. The

action

S[x(t)] =

∫
C
L(xi, ẋi, t)dt (3.10)

is extremal, if xi(t) satisfies the Euler-Lagrange equation,

∂L

∂xi
− d

dt

∂L

∂ẋi
= 0. (3.11)

This condition guarantees that δS vanishes for all variations, xi(t) → xi(t) + δxi(t) which

vanish at the endpoints of the motion. Let xi(t) be a solution to the Euler-Lagrange equation.

Then a function of xi(t) and its time derivatives,

f(xi(t), ẋi(t), . . . ) (3.12)
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is conserved, if it is constant along the paths of motion

df

dt

∣∣∣∣
xi(t)

= 0. (3.13)

Sometimes it is the case that δS vanishes for certain limited variations of the path without

imposing any condition at all. When this happens, we say that S has a symmetry.

Definition 3.6. A symmetry of an action functional S[x] is a transformation of the path,

xi(t)→ λi(xj(t), t) that leaves the action invariant,

S[xi(t)] = S[λi(xj(t), t)] (3.14)

regardless of the path of motion xi(t). In particular, when λi(x) represents a continuous

transformation of x1, we may expand the transformation infinitesimally, so that

xi → x′i = xi + εi(x) (3.15)

δxi = x′i − xi = εi(x). (3.16)

Since the infinitesimal transformation must leave S[x] invariant, we have

δεS = S[xi + εi(x)]− S[xi] = 0 (3.17)

whether x(t) satisfies the field equations or not. If an infinitesimal transformation is a

symmetry, several infinitesimal transformations can be arbitrarily applied to recover the

invariance of S under finite transformations. λ(x) is here a specific function of the coordin-

ates. There is not placing any new demand on the action, just noticing that particular

transformations do not change it.

Theorem 3.7 (Noether’s Theorem). (D. Wheeler, [41]) Suppose an action dependent on

N independent functions xi(t), i = 1, 2, . . . , N , has a symmetry so that it is invariant under

δεx
i = x′i − xi = εi(x), (3.18)

where εi(x) are fixed functions of xi(t). We carefully distinguish between the symmetry

variation δε and a general variation δ. Then the quantity

I =
∂L(x(λ))

∂ẋi
εi(x) (3.19)

is conserved.
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Proof. (D. Wheeler, [41]) According to Definition 3.6., the existence of a symmetry means

that

0 = δεS[x(t)]

=
∑N

i=1

∫ t2
t1

(
∂L(x(t))

∂xi
εi(x) +

(
∂L(x(t))

∂ẋi(n)

)
dεi(x)

dt

)
dt

Notice that δS vanishes identically due to the symmetry of the action. There was no equa-

tion of motion used.

Now let integrate the second term by parts. We get

0 =
∫ ( ∂L

∂xi
εi(x) +

d

dt

(
∂L

∂ẋi
εi(x)

)
− d

dt

(
∂L

∂ẋi

)
εi(x)

)
dt

=
∂L

∂ẋi
εi(x)

∣∣∣∣t2
t1

+
∫ ( ∂L

∂xi
− d

dt

(
∂L

∂ẋi

))
εi(x)dt.

This expression vanishes for every path.

Now suppose that classical path xi(t) satisfies the Euler-Lagrange equation (3.11). Then

for that path, the integrand vanishes and we get

0 = δS[x]

=
∂L

∂ẋi
εi(x(t))

∣∣∣∣t2
t1

= I(t2)− I(t1)

for any two end times, t1, t2.

Therefore,

dI

dt
= 0

and I =
∂L(x, ẋ)

∂ẋi
εi

is a constant of the motion.

3.3 Symmetries

A metric has a symmetry when there is a coordinate transformation that does not change

the components of a metric. Let show that the Minkowski spacetime metric is invariant

under ten symmetry transformations. General reference for this section is D. Wheeler [40].

Let start with a definition of a covariant derivative:
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Definition 3.8. The covariant derivative of a covariant tensor Xa is

Xa;b =
∂Xa

∂xb
− ΓkabXk, (3.20)

where Γkab is a second kind of the Christoffel symbol, which is a tensor-like object derived

from a Riemannian metric.

Now let define a Killing equation:

Definition 3.9. A Killing vector field is a type of a symmetry defined as a smooth vector

field that preserves the metric tensor. This is usually called a Killing equation and written

as:

Xa;b +Xb;a = 0, (3.21)

where Xa;b is a covariant derivative.

Given the metric, we search for all solutions to the Killing equation (3.21). Solutions, if

they exist, represent symmetry directions of the spacetime, i. e. directions in which the

metric is unchanging.

Consider spacetime with Minkowski metric ηµν . In Cartesian coordinates,

ηµν =


−1

1

1

1


Now we replace the covariant derivatives by partial derivatives, and the Killing equation

becomes

Xa,b +Xb,a = 0.

If we derive further, we get

Xa,bµ +Xb,aµ = 0.

Now, if we cycle the indices twice, we get

Xb,µa +Xµ,ba = 0,

Xµ,ab +Xa,µb = 0.
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Next step is to add the first two and subtract the third. Then we have

0 = Xa,bµ +Xb,aµ +Xb,µa +Xµ,ba −Xµ,ab −Xa,µb = 2Xb,aµ.

As seen above, the second derivative of Xb vanishes. This means that Xb must be linear in

the coordinates,

Xa = αa + βabx
b.

If we substitute this into the Killing equation, we have

0 = Xa,b +Xb,a = βab + βba,

where αa is arbitrary while βaβ is antisymmetric.

Therefore, we get 10 independent vector fields, each of the form

Xa = αa + βabx
b

for independent choices of the 10 constants αa and βab = −βba.
If we take βab = 0 and one of the components (say, m for m = 0, 1, 2, 3) of αa nonzero, we

get four constant vector fields,

Xa
m = δam.

This represents a unit vector in each of the coordinate directions. Since they are constant,

the integral curves are just the Cartesian coordinate axes.

Now let set αa = 0 and choose one of the six antisymmetric matrices βab. Then we get

either rotations or boosts. For instance, with b21 = −b12 = 1 and with all the rest zero, the

vector field is

X = Xa∂a = (ηabβbµx
µ)∂a = x ∂

∂y − y
∂
∂x .

This is the generator of a rotation around the z axis. Analogously, b23 = −b32 and b31 = −b13

are the generators of rotations around the x and y axes, respectively.

Moreover, if one of the nonzero indices is time, then we get a boost because of the sign

change. For b10 = −b01 = 1, we find
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X = Xa∂a = (ηabβbµx
µ)∂a = x ∂

∂t + t ∂∂x .

This is a generator for a Lorentz transformation, which is a linear transformations from a

coordinate frame in spacetime to another frame that moves at a constant velocity. To see

this, exponentiate the generator with a parameter

Λ = exp
[
λ
(
x ∂
∂t + t ∂∂x

)]
=
∑∞

n=0
1
n!λ

n
(
x ∂
∂t + t ∂∂x

)n
.

Consider the effect on the coordinates (t, x, y, z). Clearly, Λy = Λz = 0. For t, we need

(
x ∂
∂t + t ∂∂x

)
t = x

(
x ∂
∂t + t ∂∂x

)2
t =

(
x ∂
∂t + t ∂∂x

)
x = t

and so on, alternating between x and t. The even and odd parts of the series therefore sum

separately

Λt =
∑∞

n=0
1
n!λ

n
(
x ∂
∂t + t ∂∂x

)n
t =

∑∞
m=0

1
(2m+1)!λ

(2m+1)x+ 1
(2m)!λ

(2m)t = x sinhλ+ t coshλ.

Similarly, acting on x we get

Λx = t sinhλ+ x coshλ.

We recognize λ as the rapidity, and the full transformation,

Λt = x sinhλ+ t coshλ

Λx = t sinhλ+ x coshλ

Λy = y

Λz = z

as a boost in the x-direction.

Therefore, ten is the maximum number of independent solutions to the Killing equation,

which means that we find exactly 10 symmetries in Minkowski space.



Chapter 4

Theory of perception

While our sensory receptors are constantly collecting information from the environment, it

is ultimately how we interpret that information that affects how we interact with the world.

Perception refers to the way sensory information is organized, interpreted, and consciously

experienced. In this chapter, we first present possible models of perception. Furthermore,

we introduce a mathematical model of perception. In last section, we prove Invention of

Symmetry Theorem.

4.1 Models of perception

A relationship between perception and objective reality is called a perceptual strategy.

Since before Plato, philosophers have proposed many theories of the relationship between

perception and reality. Here are a few key theories.

4.1.1 Näıve realism

Perceptual scientists often claim that perceptions are accurate depictions of reality. S. E. Pal-

mer [27], asserts that, ”Evolutionary speaking, visual perception is useful only if it is reason-

ably accurate... By and large, what you see is what you get.” Z. Pizlo and his collaborators

[30] agree: “We close by re-stating the essence of our argument, namely, veridicality is an es-

sential characteristic of perception and cognition. It is absolutely essential. Perception and

cognition without veridicality would be like physics without the conservation laws.” They

also argue that creatures whose perceptions are more true, are also more fit. W. Geisler and

R. Diehl [9] say, ”In general, (perceptual) estimates that are nearer the truth have greater

utility than those that are wide ofF the mark.” Therefore, due to natural selection, the

31
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accuracy of perceptions, in most cases, approximate the truth. The model of perception

that faithfully and exhaustively resembles reality is called näıve realism. It states that we

see the truth, the whole truth and, most often, nothing but the truth.

4.1.2 Critical realism

The claim of näıve realism is weakensed by critical realism, also known as scientific realism.

Critical realism states that perception faithfully resembles a part of reality, but not all of

reality. We see the truth, but not the whole truth, and sometimes something other than

the truth. For instance, we see visible light but not ultraviolet or x-rays, and we can have

misperceptions, such as optical illusions. Most students of perception today are critical

realists (J. T. Mark et al., [22]).

4.1.3 Interface theory of perception

D. D. Hoffman et al. [13] argue, on evolutionary grounds, that all of the above is false. They

claim that instead, our perceptions constitute a species-specific user interface that guides

behavior in an evolutionary niche. That model is called the Interface Theory of Perception

(ITP) and it says:

Interface Theory of Perception: The perceptions of an organism are a user interface

between that organism and the objective world.

ITP is illustrated intuitively using a graphical user interface (GUI) analogy. The desktop

display of a computer shows a set of icons representing files, folders, operations (such as

trash/delete), and apps. You don’t take that interface literally. You understand that your

latest manuscript isn’t literally a little rectangle sitting in a clutter of other little rectangles

in the upper left corner of your display. Rather that little rectangle is just a convenient icon

that represents your manuscript. Similarly, you understand that if you drag that little rect-

angle to the trashcan in frustration, the rectangle isn’t literally in the trashcan. Rather, the

desktop is a convenient medium to interface with the underlying reality of your computer.

It’s useful because it hides the truth and instead presents a set of user-friendly shortcuts

for writing papers, sending messages, and manipulating photos. Notice too how notions of

causality play out in the interface. The cursor, the little rectangle, and the trashcan icons

themselves have no causal power. It’s not the movement of the target rectangle of your

drag icon to the trashcan icon that causes the file to disappear; it’s the underlying electric

currents and switches that actually have causal power. According to ITP, the real causal
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powers are hidden from us. Moreover, an interface promotes efficient interaction with the

computer by hiding its structural and causal complexity, i. e. by hiding the truth. Percep-

tion, Hoffmann et al. argue, is precisely the same: what we experience is nothing more than

a set of species-specific icons, user-friendly shortcuts for staying alive and reproducing. To

sum up, perception hides the truth and guides adaptive behaviors.

4.2 Mathematical model of perception

We now make mentioned theories of perception precise, beginning with a formal structure for

perceptions. General reference for this section is J. T. Mark, B. B. Marion, D. D. Hoffman

[22].

We assume that the external world can be represented by a measurable space, W . Similarly,

we assume that a collection of perceptions can be represented as a set, X. As W , X is also

a measurable space. A perceptual strategy is a map, or more precisely, a Markov kernel

P : W → X, that maps a state of the world to a random distribution of possible perceptions

of that state by an agent. Different perceptual strategies differ in the properties of P .

For the simplest version of a näıve realist strategy, X = W and P is an isomorphism.

Perception faithfully resembles all of reality. Furthermore, we distinguish two types of crit-

ical realist strategies: strong and weak. Strategies of the strong type are a proper subset

of strategies of the weak type. For the strong type, X ⊂ W and P is an isomorphism.

Perception faithfully mirrors a subset of reality. For the weak type, P : R ⊂ W → P (R)

is a homomorphism. Perception need not faithfully mirror any subset of reality, but re-

lationships among perceptions reflect relationships among aspects of reality. Thus, weak

critical realists can be based on utility, so long as this homomorphism is maintained. For

the interface strategy, in general P need not be an isomorphism or even a homomorphism

on any subset of W . Perception need not faithfully mirror any subset of reality, and the

relationships among perceptions need not reflect relationships among aspects of reality.

Given these definitions, the näıve realist strategies are a subset of the critical realist

strategies, which in turn are a subset of the interface strategies, as illustrated in Figure

3.1.



34 Theory of perception

Figure 4.1: Classes of perceptual strategies. [Source: J. T. Mark, B. B. Marion,
D. D. Hoffman, [22]]

We wish to study the fitness of these three classes of perceptual strategies in an evolutionary

environment. For this, we turn to evolutionary games. In Chapters 5, 6 and 7 we present

mathematical models of above mentioned perceptual strategies and study the competition

between them. But before that, in the next section, we prove Invention of Symmetry

Theorem by D. D. Hoffman, M. Singh, C. Prakash [14], that integrates the content of

Chapters 3 and 4 into a mathematical model of a significant philosophical question: ’What

is reality?’.

4.3 Invention of Symmetry Theorem

We can expand our perceptions of spacetime by using groups symmetry, e. g., Euclidean

groups. Changes in an observer’s viewpoint can then be modeled by actions of these groups

on the appropriately extended spacetime. General reference for this section is D. D. Hoff-

man, M. Singh, C. Prakash [14].

B. Russell [34] claims that if a feature of our perceptions is invariant under these group

actions, then it can be taken as veridical. But this claim is false. The Invention of Symmetry

Theorem shows that the world itself might not share any of the observed symmetries. The

world need not have the structure percieved by the observer, no matter how complex that

structure is and no matter how predictably and systematically that structure transforms.

Theorem 4.1. (Invention of Symmetry Theorem) Let an observer have at its disposal a

group G of actions on the world W , such that observer’s perceptual space X is a G-set.

This means that G acts on X via the kernel PA = P (A(g)) =
∫
P (w, dx)A(g, dw), i. e. the

action of A followed by that of P ; moreover G acts on X by a transitive group action, so that

G is a symmetry group of X. Let G act on W in such a way that the observer’s perceptual

channel mediates this action: P (g.w) = g.P (w), where the dot signifies the action of G on
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each set. Then, the perceptual experiences X of this observer will admit a structure with G

as its group of symmetries.

Definition 4.2. The points, w,w′ ∈ W , are in the same fiber if the probability measure

P (w, ·) on (X,X ) is the same as the probability measure P (w′, ·). In other words, w and

w′ are indistinguishable to the observer.

Proof. Let Sx be the fiber of P over x ∈ X. Then, we may view W = ∪x∈XSx and think

of each element of W as a pair (x, s), s ∈ Sx. Because the function P is onto X, we can

view P as a projection: P (x, s) = x. When G acts on W , it will take each element (x, s),

s ∈ Sx, to an element (g.x, s′), s′ ∈ Sg.x. This preserves the fibers of P . Moreover, when

G acts on W via the group element g, because of g.x = g.P (w) = P (g.w), it automatically

acts on X by the same element.

Perceptual experiences of an observer may have a rich structure, e. g., a 3D structure that

is locally Euclidean, and that transforms predictably and systematically as the observer

acts, but this says absolutely nothing about the structure of the world. This is entirely

contradictory to instinct. We naturally assume that the rich structure of our perception, and

their transformations as we act, must be an insight into the true structure of the objective

world. Invention of Symmetry Theorem shows that our intuition here is completely wrong.



Chapter 5

Interface perceptual strategies

drive veridical strategies to

extinction

J. T. Mark et al. [22] use evolutionary games to analyze under what circumstances natural

selection favors veridical perceptions. The goal of evolutionary game theory is to explain

behavior in strategic settings typically biological or economic from the perspective of Dar-

winian evolution. An evolutionary system involves three basic elements: a strategic game,

a population of players, and some mathematical conception of the evolution of strategic

game-play throughout the population. We reproduce mathematical model for territorial

games introduced by J. T. Mark et al. [22] and adapt it to new perceptual strategies.

5.1 Mathematical model

In a territorial game, p players compete in pairs, they choose between t territories with k

resources each. Each resource takes a discrete value in the set V = {1, 2, ...,m}. Let rT be

the vector of resources in territory T . The utility of territory T is defined as

u(T ) = U(rT ) =

k∑
i=1

Ui(rT,i), (5.1)

where Ui is the utility of contribution of resource rT,i in territory T . In our investigations,

it is either monotonous linear or Gaussian, as we specify later.

36
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From interface theory of perception combined with utility theory, we take the universal

model of an agent – a process, and from game theory, we take the decision tree to be the

structure of decisions of each agent. Figure 5.1 shows a universal process model, which

creates an image of the world using perception methods (measurement, observation, com-

munication). On this basis, decisions between possible activities are made. The implement-

ation of these activities leads to a change in the state of the world, which completes the

perception-decision-implementation cycle. Within the state of the world, we can evaluate

the usefulness of the state of the world or utility of system operation. (D. Bokal, P. Fic

[4]) The agent acting in the world W is defined with a 5-tuple A = (X,G,P,D,U), where

Figure 5.1: Universal model of a process. [Source: (D. Bokal, P. Fic [4]).]

X is the space of agent’s possible perceptions, G is a semigroup of agent’s actions. Simil-

arly as W , both X and G are measurable spaces. Then P , D, U are agent’s perception,

decision, and utility operators. In highest generality, they are modelled as Markov kernels;

P : W → X, D : X → G, U : W → R. Actions A ∈ G are defined as A : W →W , and they

are Markov kernels as well. This model fitting the universal model of a process is shown on

Figure 5.2.

G X

W R
A

D

P
U

Figure 5.2: Agent acting in the world. [Source: Own.]

For the rest of this section, we assume that r = 1. J. T. Mark et al. [22] introduce four agent
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strategies that could participate in one of two games that differ in the definition of utility.

Utility is mapping U : W → R defined as either identity in the first game or Gaussian

function in the second game:

U(x) =
1√
40π

e−
1
2

(x−50)2

400 (5.2)

Moreover, for all four strategies described next, world W is the same and it is defined as

W = {1, . . . ,m}t.

As described in Chapter 3, a näıve realist perception faithfully and exhaustively resembles

reality. The mapping from the world to the space of perceptions (Xn = W ) of näıve realist

is an identity map: Pn : W → Xn. Decision is a mapping from space of perceptions to a

semigroup of agent’s actions Gn = {1, . . . , t} Dn : X → Gn implying that the agent picks

the available territory with maximum amount of the resource, and defined as:

Dn(X) = argmaxp=Pn(w),i∈Gn
p[i]. (5.3)

The mapping from the world to the world, A : W →W , named actions is for a näıve realist

defined as the change of utility and the change of a resource value on the territory:

u′ = u+ U(ri),

r′i = 0.
(5.4)

A mathematical model for a näıve realist is shown in Table 5.1:

Elt näıve realist
W {1, . . . ,m}t
X W
G {1, . . . , t}
P w
A u′ = u+ U(ri), r

′
i = 0

D argmaxp=Pn(w),i∈Gn
p[i]

U U(ri)

Table 5.1: Mathematical model of a näıve realist.

Next we introduce a mathematical model of a semi-veridical strategy, the critical realist

CRn. He does not perceive the true amount of resource, but categorizes it into n categories

preserving the ordering. J. T. Mark et al. [22] call this a nCat agent. Assume that n = 2.

Critical realist claims that perception faithfully resembles some aspect of reality, but not

all of it: he distinguishes between little and much of the resource. The mapping from the
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world to its space of perceptions is Pc : W → Xc, Xc = {0, 1}, defined as:

Pc(w) =

0, if 1 ≤ w ≤ β,

1, if β < w ≤ m,
(5.5)

where β is a boundary between perceiving lots or little of the resource. Decision is a mapping

from the space of perceptions to a semigroup of agent’s actions Dc : Xc → Gc, Gc = Xc

given by:

Dc(X) = argmaxp=Pc(w),i∈Gc
p[i]. (5.6)

Among maximal elements with p[i] = p[j], the territory is chosen randomly and holds also

for all subsequently described strategies. Actions, the mapping from the world to the world,

A : W →W , are for CR2 defined as:

u′ = u+ U(ri),

r′i = 0.
(5.7)

Now assume that n = 3. A critical realist with three perceptual categories (here highlited

with red, yellow, green) and perceptual order red < yellow < green is illustrated in Figure

5.3; J. T. Mark et al. [22] calls it CR3. Its decision rule would be to prefer yellow to green,

and green to red. Notice that the order governing its decision rule is red < green < yellow

which differs from its perceptual order.

Figure 5.3: Optimal boundary placement on a Gaussian utility structure for a 3Cat
critical realist. [Source: (J. T. Mark, B. B. Marion, D. D. Hoffman, [22]).]

A mathematical model of a 3Cat critical realist strategy maps from the world to its space
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of perceptions with Pp : W → Xp, Xp = {0, 1, 2}, defined as:

Pp(w) =


0; if 1 ≤ w ≤ β1,

1; if β1 < w ≤ β2,

2; if β2 < w ≤ m,

(5.8)

where β1 and β2 are boundaries in CR3’s perception between low, intermediate, and high

amounts of the resource. Decision is a mapping from space of perceptions to a semigroup

of agent’s actions Dp : Xp → Gp given by priority partial order: 0 < 2 < 1, i. e. it chooses

randomly between territories whose perceived amounts of resource are maximal elements

for this partial order. Actions for CR3 are the same as for the CR2 (5.7).

In general, we define a mathematical model of a nCat critical realist strategy (CRn) as:

Elt CRn
W {1, . . . ,m}t
X {0, . . . , n− 1}t
G {1, . . . , t}

P


0; if 1 ≤ w ≤ β1,

1; if β1 < w ≤ β2,

...

n− 1; if βn−1 < w ≤ m,

A u′ = u+ U(ri), r
′
i = 0

D 0 < n− 1 < ... < 1
U U(ri)

Table 5.2: Mathematical model of a CRn.

A 3Cat utilitaristic interface perception that we introduce next is used by Hoffman et al.

[14] to argue that perceptions need not, and in general do not, resemble any aspect of reality.

In Figure 5.4, there is an interface strategy illustrated. It has four boundaries, but only

three perceptual categories (here highlited with red, yellow, green), so we call it IF3. It’s

decision order is red < yellow < green.

We introduce a mathematical model of IF3. The mapping from the world to its space of

perceptions is a map: Pi : W → Xi, Xi = {0, 1, 2} defined as:

Pi(w) =


0; if 1 ≤ U(w) ≤ β1,

1; if β1 < U(w) ≤ β2,

2; if β2 < U(w) ≤ m,

(5.9)
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Figure 5.4: Optimal boundary placement on a Gaussian utility structure for a 3Cat
interface strategy. [Source: (J. T. Mark, B. B. Marion, D. D. Hoffman, [22]).]

where β1 and β2 are boundaries in IF3’s perception between insufficient, mediocre, and very

useful amount of resource. Decision is a mapping from space of perceptions to a semigroup

of agent’s actions Di : X → G given by:

Di(X) = argmax
p=Pi(w),i∈Gi

p[i]. (5.10)

Actions, the mapping from the world to the world, A : W →W , are for IF3 defined as:

u′ = u+ U(ri),

r′i = 0.
(5.11)

In general, we can define a mathematical model for a nCat interface strategy. The details

of this model, reproduced from J. T. Mark et al. [22], are given in Table 5.3:

Elt IFn
W {1, . . . ,m}t
X {0, . . . , n− 1}t
G {1, . . . , t}

P


0; if 1 ≤ U(w) ≤ β1,

1; if β1 < U(w) ≤ β2,

...

n− 1; if βn−1 < U(w) ≤ m,

A u′ = u+ U(ri), r
′
i = 0

D argmaxp=Pi(w),i∈Gi
p[i]

U U(ri)

Table 5.3: Mathematical model of IFn.
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5.2 Evolutionary dynamics

Evolutionary game theory can be used to study long term interactions between two strategies.

For instance, when does one strategy drive the other to extinction, and when do the two

stably coexist? To this end, we create a payoff matrix describing the competition between

the strategies, as shown in Table 5.4:

A B
A a b
B c d

Table 5.4: Payoff matrix

The payoff matrix is defined as follows. Agent A gets payoff a when competing against agent

A and payoff b when competing against agent B. Agent B gets payoff c when competing

against agent A and payoff d when competing against agent B. The payoff to a strategy is

taken to be the fitness of that strategy, i. e. its reproductive success.

In order to determine the long-term outcome of competition between two agent strategies

(A) and (B), we apply the following proposition.

Proposition 5.1. (J. J. Armao, [1]) Let a be the expected utility obtained by (A) competing

with (A), b the expected utility of (A) competing with (B), c the expected utility of (B)

competing with (A) and d the expected utility of (B) competing with (B). There are four

possible long term outcomes of the evolutionary competition of the two species.

1. If a ≥ c and b ≥ d and at least one inequality is strict, then (A) prevails and (B)

goes extinct.

2. If c ≥ a and d ≥ b and at least one inequality is strict, then (B) prevails and (A)

perishes.

3. If a < c and b > d, they stably coexist.

4. If a > c and b < d, they are bistable, i. e. each is asymptotically stable and which

depends on the initial conditions.

5. They are neutral, if a = c and b = d, i. e. their prevalence changes randomly.

A strategy “wins” if it drives the other strategy to extinction regardless of the initial pro-

portions of the strategies; a winning strategy is the best response to itself and the other

strategy. Two strategies stably coexist if, independent of their initial proportions, those

proportions approach asymptotically stable values; each strategy is the best reply to the

other strategy, but not to itself. Two strategies are bistable if their initial proportions
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determine which strategy drives the other to extinction; each strategy is the best response

to itself, but not to the other strategy. Two strategies are neutral if their initial propor-

tions, whatever they happen to be, are preserved asymptotically (J. T. Mark, B. B. Marion,

D. D. Hoffman, [22]).

The following Lemma implicitly applied in J. T. Mark et al., [22] tells us how to determine

expected payoffs.

Lemma 5.2. Let the interaction of (A) and (B) be as described, and let p be the probability

that (A) moves first when interacting with (B). Furthermore, let Γ(i,X, Y ) denote the

expected utility of the i-th player, where X ∈ {A,B} is the strategy that chooses first, and

Y ∈ {A,B} is the strategy that chooses second. Then,

1. a = 1
2 (E(Γ(1, A,A)) + E(Γ(2, A,A))),

2. b = pE(Γ(1, A,B)) + (1− p)E(Γ(2, B,A)),

3. c = pE(Γ(2, A,B)) + (1− p)E(Γ(1, B,A)), and

4. d = 1
2 (E(Γ(1, B,B)) + E(Γ(2, B,B))).

5.3 Cost of information

Every strategy uses a specific amount of energy to percieve and handle data. Moreover,

different strategies use different amounts of energy since processing more information takes,

on average, more time and energy. The energy expenditure that each strategy uses to ac-

quire and process information, and to choose a territory, is called cost of information. This

cost is computed by multiplying the cost per bit of information, ce, by the number of bits

used. There are also, of course, energy costs for decision, not just for perception. But for

simplicity of analysis, we ignore these here. (J. T. Mark, B. B. Marion, D. D. Hoffman, [22])

Näıve realist sees log2(m) bits of information per territory, which for m = 100 is approxim-

ately 20 bits. Therefore, because there are 3 territories, it sees a total of 3 log2(m) bits of

information. Cost of information for a näıve realist is then 3ce log2(m).

Critical 2Cat realist sees 1 bit of information per territory, since it only distinguishes

between little and much of the resource. Therefore, because there are 3 territories, it

sees a total of 3 bits of information. Cost of information for a critical realist is then 3ce.

nCat agents receive the highest payout by choosing territories with resources falling in-

side one of the perceived ranges, rather than by finding the greatest quantity of resources.
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In order to pick the best territory, these strategies must know the payout associated with

each possible perceived resource quantity. Therefore, we must now charge each strategy for

both seeing the quantity and knowing the utility of each resource, and its cost becomes

ce[trlog2(q)] + ck[rqnb], (5.12)

where ce is again the cost per bit of information, ck is the cost per bit of knowledge about

utility values, t is the number of territories, r is number of resources, q is the number of

perceptual categories for that strategy, and nb is the number of bits used to represent the

utility of a resource quantity. Since CR3 and IF3 only need to order their three categories,

their nb in (5.12) is log2(3). We also assume that ck =
ce
10

, making energy costs of perception

and knowledge of utility roughly on a par.

5.4 Results: Veridical strategies driven to extinc-

tion

J. T. Mark et al. [22] first explore a competition between näıve realist and critical realist

CR2.

Figure 5.5: The results of an evolutionary game between näıve realist and critical
realist with a single resource. [Source: Reproduced from [22]]

Figure 5.5 shows how the cost of information and a threshold on food used by a 2Cat crit-

ical realist in perceiving the world affects the competition of 2Cat critical realist and näıve

realist. A critical realist drives a näıve realist to extinction (white color) for most of the

values of threshold β. Only for low cost of information, näıve realist drives critical realist

to extinction (black color), and only when the threshold β is chosen poorly. On gray area,
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the two strategies stably coexist.

J. T. Mark et al. [22] also explore a 3-way competition between näıve realist, CR3 and

IF3 strategies in the setting of non-monotonous Gaussian utility. They show that either

veridical or IF3 strategy outperform the other two, depending on the cost of information.

We reproduce their results only competing CR3 with IF3, but varying the width of the cent-

ral interval that CR3 perceives as intermediate and imposing some cost on perceiving the

true utility. On Figure 5.6 we can see the results: the augmented critical realist has a slight

Figure 5.6: The results of an evolutionary game between CR3 and IF3 with a single
resource. Note that y-scale is 1:500 compared to Figure 5.5. [Source: Own.]

chance with narrow enough intermediate interval, (the scale of the y axis is 1:500 compared

to Figure 5.5). The interface strategy drives the critical realist to extinction (white color)

for most of the interval width. Only for narrow interval and very low cost of information,

critical realist drives interface strategy to extinction (black color), although adjusting the

parameters of the IF3 perceptive strategy may possibly compensate for that advantage.

In summary, these competitions show that natural selection does not always favor näıve

realism or critical realism, and that in many scenarios, only the interface strategy survives.
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Innovative veridical perceptual

strategies drive interface strategies

to extinction

In addition to the experiments using Gaussian utility described in Chapter 5, we define two

new instances of agents that have the possibility of storing surplus resources, i. e. effectively

they introduced a new dimension into the world. The basis for the introduction of such

strategies is evolutionary: an IF3 mutation, which otherwise perceives the quantity of the

resource in a utilitarian manner, can develop the possibility of storing excessive amounts of

the resource. The agent using such strategy needs to decide, whether to consume the re-

source or store it. For such a decision, the agent needs to distinguish between too much and

too little of the resource, and needs a credible perception of its amount: it is evolutionarily

motivated for veridical perception.

Strategies with storage can be divided according to how the reality is perceived into critical

realist strategy with n categories (CRn) and interface strategies with n categories (IFn).

Analogously, storage can be perceived in two ways: critically realistic with m categories

(SRm) or utilitaristically with m categories (SIFm).

In our model, the amount of stored resource (rs) takes value in the set V = {1, 2, ...,m}.
3Cat critical realist with storage perceives the amount of resource in the storage as 2Cat

critical realist would perceive another territory, i. e. there is a threshold value r∗, such that

the storage is seemed empty for rs < r∗, or full otherwise. In each case, the CR3SR2 agent

chooses the territory with intermediate amounts of the resource first, so as to take advant-

age of the inherent utility of the territory first. If there is none and the storage is empty,

46
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the agent prefers the territory with too much of the resource; if the storage is perceived full,

the agent prefers territory with too little of the resource.

For the storage to be fully exploited, we need to introduce another parameter into the

model:

Definition 6.1. Lifespan l is defined as the number of interactions between the two com-

peting strategies.

Lifespan says how often can two agents compete for a territory and apply the advantage of

storing excessive or supplementing insufficient amount of the resource.

6.1 Mathematical model of a CR3SR2

We now introduce our mathematical model of a 3Cat critical realist with storage (CR3SR2).

A mathematical model of a 3Cat critical realist strategy with storage (CR3SR2) is defined

on the measure space W = {1, . . . ,m}t+1. It maps from the world to its space of perceptions

with Pcs : W → Xcs, Xcs = {0, . . . , 2}t × {0, 1}, defined as:

Pcs = (Pc, Ps);Pc(t) =


0; if 1 ≤ t ≤ βc,

1; if βc < t ≤ γc,

2; if γc < t ≤ m.

Ps(s) =

0; if 1 ≤ s ≤ βs,

1; if βs < s ≤ m,
(6.1)

where βc and γc are boundaries in CR3SR2’s perception between low, intermediate, and

high amounts of the resource and βs is boundary in CR3SR2’s perception between empty

and full storage.

Decision is a mapping from space of perceptions to a semigroup of agent’s actions Dcs :

Xcs → Gcs given by priority partial order:

Dcs =

0 < 1 < 2; if 1 ≤ s ≤ βs,

0 < 2 < 1; if βs < s ≤ m,
(6.2)

which depends on the state of storage.

Actions, the mapping from the world to the world, Acs : W → W , are for CR3SR2 given
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by change of the amount of resource in storage and utility:

s′ =

min(smax, ri + s− r∗); if ri + s > r∗,

max(0, ri + s− r∗); if ri + s ≤ r∗,
(6.3)

u′ = u+

U(r∗); if ri + s > r∗,

U(ri + s); if ri + s ≤ r∗,
, r′i = 0. (6.4)

Utility U , which is a mapping from the world to the set of a real numbers, is defined as

U(ri).

The details of mathematical model of a CR3SR2 are given in Table 6.1.

Elt CR3SR2
W {1, . . . ,m}t+1

X {0, . . . , 2}t × {0, 1}
G {1, . . . , t}

P Pc(t) =


0; if 1 ≤ t ≤ βc,

1; if βc < t ≤ γc,

2; if γc < t ≤ m.

Ps(s) =

{
0; if 1 ≤ s ≤ βs,

1; if βs < s ≤ m,

A s′ =

{
min(smax, ri + s− r∗); if ri + s > r∗,

max(0, ri + s− r∗); if ri + s ≤ r∗,

u′ = u+

{
U(r∗); if ri + s > r∗,

U(ri + s); if ri + s ≤ r∗,
, r′i = 0

D

{
0 < 1 < 2; if 1 ≤ s ≤ βs,

0 < 2 < 1; if βs < s ≤ m,

U U(ri)

Table 6.1: Mathematical model of CR3SR2.

6.2 Cost of information

Next to the earlier defined lifespan, there is another new parameter introduced by the game.

It is the cost that having a storage incurs on the individual. Since CR3SR2 has a storage,

and IF3 does not have a storage, CR3SR2 uses more energy. Therefore, we must charge

CR3SR2 for seeing the quantity in storage, and its cost becomes

ce[c0q], (6.5)
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where ce is again the cost per bit of information, c0 is the cost per bit of knowledge about

utility values, q is the number of perceptual categories of storage for that strategy. We

somewhat arbitrarily assume that c0 =
Mv(50)

800
.

6.3 Results: IF3 perishes against CR3SR2

While the results of J. T. Mark et al. [22] and Invention of Symmetry Theorem may shed

doubt into veracity of our understanding of the world, we present further similar exper-

iments that exhibit a significantly more complex structure of the problem of veracity of

perceptions: we claim the dynamics of the evolution may create circumstances under which

the increasing veracity of perceptions may be favourable in comparison to utilitaristic per-

ceptions. Suppose a mutation in the IF3 organisms would introduce storage of the excessive

amount of the resource that the organism cannot utilitarize. Then, it would be favourable

for the organism to distinguish between too much and too little of the resource in the ter-

ritory, thus being able to utilitarize the storage better.

In this section, we show that CR3SR2 can successfully compete with interface strategy

IF3. Organism applying this innovation would move more slowly, as the storage would han-

dicap its agility. We explore mentioned competition in different lifetimes, where lifetime is

a number of interactions. Specifically, lifetime of lenght 1 means that the storage is empty

at first and that agents compete only once. Analogously, the lifetime of the length l means

that the storage is empty at first and it participates in every new competition with storage

from the previous interaction.

We competed IF3 against CR3SR2 for lifetimes l ∈ {1, 2, . . . , 32, 64, 128, 250, 500, 1000},
at which value the results converged and the last two images showed no further change.

Each was competing at discrete values of r∗s ∈ {1, 11, 21, 31, . . . , 91, 101}, with the last value

interpreted as always perceiving empty storage and desiring to claim territory with excess-

ive amounts of the resource. For each of these values, we imposed a cost on the storage of

CR3SR2 competing with IF3 with values cs ∈ {1, 11, 21, 31, . . . , 91, 101}, which was com-

parable to the maximum amount of utility Uv, taking values in the interval [0.0039, 0.0892].

Figure 6.1 shows the results for given values of r∗s (x axis) and cs (y axis) for lifespan of

l = 4 interactions, where the benefit of the storage is the highest. We see that CR3SR2

drives IF3 to extinction (black color) for all examined low values of storage cost and coexist

for all the higher. Although CR3SR2 is slower at picking the territory, storage gives it the

advantage over the utilitaristic IF3 when cost of storage is comparable to the utility of a
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Figure 6.1: The results of an evolutionary game between CR3SR2 and IF3 with a
single resource for lifespan 4 years.

terrain.

Figure 6.2: The results of an evolutionary game between CR3SR2 and IF3 with a
single resource for lifespan 16 years. [Source: Own.]

As shown on Figure 6.2, for higher lifespans, the advantage of the storage decays. Further-

more, it converges with l = 500, but for lower values of cs, CR3SR2 still dominates IF3 for



6.3 Results: IF3 perishes against CR3SR2 51

all values of r∗s .

To sum up, we showed that there exist conditions in which (simplified) veridical perceptions

can drive utilitaristic strategies to extinction.
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Innovative interface strategies

drive innovative veridical strategies

to extinction

We introduce another mutation in the winning veridical perception and allow it to perceive

the exact utility of the terrain and the current storage combined in a similar way the IF3

strategy perceives the utility of just the terrain.

In addition to CR3SR2, we introduce a 3Cat interface strategy with storage, IF3S. This

strategy has storage, but perceives the exact utility of the territory given the exact amount

of resource available in the storage. The utility is perceived in three categories as with

IF3, and the decision operator is the same. We hence term this to be an interface strategy,

although it needs veridical inputs to produce utilitaristic perception: both territory amount

and storage amount of the resource must be accounted for veristically to distinguish between

the three categories of utility in 3Cat perceptions.

7.1 Mathematical model of IF3S

We will now introduce our mathematical model of a 3Cat interface strategy with storage

(IF3S), who perceives the exact utility received by using the storage innovation in the same

way as IF3, i. e. it computes the utility u(r, s) received when the selected territory has r

amount of resource and s is the amount in the storage, and then perceives that amount of

utility using the perceptions of IF3, i. e. very useful, mediocre, insufficient.

52
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A mathematical model of a 3Cat interface strategy with storage (IF3S2) is defined on

the measure space W = {1, . . . ,m}t+1. It maps from the world to its space of perceptions

with Pu : W → Xu, Xu = {0, . . . , 2}t × {0, 1}, and is defined as:

Pu(t, s) =


0; if 0 ≤ Uc(t, s) ≤ βu,

1; if βu < Uc(t, s) ≤ γu,

2; if γu < Uc(t, s).

(7.1)

where βu and γu are boundaries in IF3S’s perception between insufficient, mediocre, and

very useful amount of utility in regards to the state of storage.

Decision is a mapping from space of perceptions to a semigroup of agent’s actions Du :

Xu → Gu, Gu = {1, . . . , t} given by priority partial order:

0 < 1 < 2. (7.2)

Actions, the mapping from the world to the world, Acs : W → W , are for CR3SR2 given

by change of the amount of resource in storage and utility:

s′ =

min(smax, ri + s− r∗); if ri + s > r∗,

max(0, ri + s− r∗); if ri + s ≤ r∗,
(7.3)

u′ = u+

U(r∗); if ri + s > r∗,

U(ri + s); if ri + s ≤ r∗,
, r′i = 0 (7.4)

Utility U , which is a mapping from the world to the set of a real numbers is defined as

U(ri).

Details of our mathematical model of a 3Cat interface strategy with storage (IF3S) are

given in Table 7.1.
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Elt IF3S
W {1, . . . ,m}t+1

X {0, . . . , 2}t × {0, 1}
G {1, . . . , t}

P Pu(t, s) =


0; if 0 ≤ Uc(t, s) ≤ βu,

1; if βu < Uc(t, s) ≤ γu,

2; if γu < Uc(t, s).

A s′ =

{
min(smax, ri + s− r∗); if ri + s > r∗,

max(0, ri + s− r∗); if ri + s ≤ r∗,

u′ = u+

{
U(r∗); if ri + s > r∗,

U(ri + s); if ri + s ≤ r∗,
, r′i = 0

D 0 < 1 < 2
U U(ri)

Table 7.1: Mathematical model of IF3S.

7.2 Cost of information

When CR3SR2 competed with IF3S, we applied the same values for r∗s , but imposed addi-

tional costs with the same values on IF3S. We assumed that IF3S would spend more energy

for the additional computations in the perception mechanism, but the cost of storage would

be the same for both strategies. Therefore, we must charge IF3S, and its cost becomes

Uv(50)

1000
ce, (7.5)

where ce is again the cost per bit of information.

7.3 Results: CR3SR2 perishes against IF3S

In this section, we demonstrate that interface perception with storage has significant advant-

age over CR3SR2, thus innovative utilitaristic interface perception is the final evolutionary

winner.

In Figure 7.1, we show the results of the competition between CR3SR2 and its mutation

IF3S, which is able to precisely perceive the utility of combined amount of the resource

in its storage and a possible territory. We assume this innovative storage imposes some

additional cost to the organism. The figure shows success of the innovative utilitaristic in-

terface perception over the original critical realist, which is emphasized with higher number
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Figure 7.1: The results of an evolutionary game between CR3SR2 and IF3S2 with a
single resource for lifespan 4 years. [Source: Own.]

of average interactions between the organisms: in comparison to rather comparable success

of both strategies at four interactions.

Figure 7.2: The results of an evolutionary game between CR3SR2 and IF3S With a
single resource for lifespan 16 years. [Source: Own.]

In Figure 7.2, at 16 interactions, we can see that CR3SR2 barely has any viable parameters.

At numbers higher than 23, the benefits of the storage outweigh any of the tested values of

costs.



Conclusion

Perceptual researchers typically assume that from an evolutionary point of view it is clearly

desirable for an organism to achieve veridical percepts of the world. They assume, that

is, that truer perceptions are ipso facto more fit. J. T. Mark et al. [22] tested this as-

sumption using standard tools of evolutionary game theory. They discovered that more

realistic perceptions are not necessarily more successful: Natural selection can drive real-

istic perceptions to extinction when competing with perceptions that use specific interfaces

that simplify and adapt the truth in order to better represent the utility of what is being

perceived.

Their simulations do not find that natural selection always drives truth to extinction. There-

fore, we created conditions in which natural selection gives priority to (simplified) veridical

perceptions. We defined strategies that store excessive amounts of the resource and studied

an evolutionary game between the strategies IF3 and CR3SR2. Given the reasonably low

cost of storage of the resource, innovative simplified veridical perceptions may displace the

interface perceptions, even if the latter have the advantage of the first choice of the territ-

ory. Furhermore, we examined what happens when veridical strategy with storage and the

interface strategy with storage compete. Our simulations show that interface strategy with

storage drives the critical realist with storage to extinction.

Using these illustrative examples, we conclude with some open problems. First, we (vaguely)

define four stategies A, B, C, D to constitute the valley of death, if A perishes against B,

which perishes against C, which perishes against D. In addition, C uses the perceptions of

A to support an innovation that cannot be supported using perceptions of B, and D uses

the perceptions of B to perceive the true utility of innovation of A.

For the mathematical direction of the research, we conjecture that for each non-monotonous

utility function, there exist four strategies that exploit the non-monotonicity of that function

to exhibit the technological valley of death.

For microeconomic direction of the research, games with incomplete information could be

defined as games where the state of the world is inaccurately perceived by both the agents.
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Perception strategies could be introduced into those games so as to either heuristically per-

ceive the expected utility of the situation (modelling heuristics within the current approach

to these games), or to add additional information about the state of the world (modelling

cheating at such games, or research in market situations). In these cases, such perceptive

games could yield improved understanding of the role of marketing, marketing research,

and advertising.

For decision science and management direction of the research, the role of perceptions vs.

decisions could be further explored in the stated setting. Perceptions play significant role in

information systems, linked to data acquisition, data quality, data presentation. Decisions

based on that data are significsnt in corporate performance management systems. The

models presented here could be used for fundamental research in those settings.
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[5] P. Billingsley, Probability and Measure, Third edition, John Wiley & Sons, Inc., United

States of America, 1995.

[6] S. Debois, T. Hildebrandt, T. Slaats, M. Marquard, Bridging the valley of death: a

success story on danish funding schemes paving a path from technology readiness level

1 to 9, Proceedings of the Second International Workshop on Software Engineering

Research and Industrial Practice, Florence (2015), pp. 54–57.

[7] G, Technology Readiness Levels, European Commission (online). (Accessed on

10/04/2019). Accessible at:

https://ec.europa.eu/research/participants/data/ref/h2020/wp/20142015/annexes/

h2020wp1415annexgtrlen.pdf

[8] W. S. Gang, Gauge Invariance Approach to Acoustic Fields, Springer, Singapore, 2019.

[9] W. Geisler, R. Diehl, A Bayesian approach to the evolution of perceptual and cognitive

systems, Cognitive Science, 27(3) (2003) pp. 379—402.

[10] A. Gonzalez, Metric and topological spaces, (Accessed on: 04/10/2019). Accessible at:

https://www.math.ksu.edu/ agondem/Ab12-13Metric files/Metric%20and%20topolo-

gical%20spaces.pdf

59



60 BIBLIOGRAPHY

[11] K. E. Gulbrandsen, Bridging the valley of death: The rhetoric of technology transfer,

Graduate Theses and Dissertations, Iowa State University, Iowa, 2009.

[12] D. Heyer, R. Mausfeld, Perception and the physical world: Psychological and philo-

sophical issues in perception, Wiley, New York, 2002.

[13] D. D. Hoffman, The interface theory of perception. Object Categorization: Computer

and Human Vision Perspective (2009) pp. 148—165.

[14] D. D. Hoffman, M. Singh, C. Prakash, The interface theory of perception, Psychon

Bull Rev 22 (2015) pp. 1480–1506.

[15] D. D. Hoffman, M. Singh, C. Prakash, Probing the interface theory of perception:

Reply to commentaries, Psychobn Bull Rev 22 (2015) pp. 1551–1576.

[16] J. Hudson, H. F. Khazragui, Into the valley of death: research to innovation, Drug

discovery 18 (2013) pp. 610–613.

[17] M. H. Kalos, P. A. Whitlock, Monte Carlo Methods, Second, Revised and Enlarged

Edition, Wiley-VCH, Weinheim, 2008.

[18] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, Course of Theoretical

Physics 2 (4th ed.), Butterworth–Heinemann, 2002.

[19] P. Leitner, Technology Readiness Levels, Impact of Science, and the “Valley of Death”

(online). (Accessed on 24/07/2019). Accessible at:

http://philippleitner.net/technology-readiness-levels-impact-of-science-and-the-valley-

of-death/

[20] T. Lindström, S. Silver, Avoiding the innovation valley of death; Private sector com-

mercialization of publicly funded research, Master of science thesis, KTH Industrial

Engineering and Management, Stockholm, 2017.

[21] J. C. Mankins, Technology readiness levels, White Paper 6 (1995).

[22] J. T. Mark, B. B. Marion, D. D. Hoffman, Natural selection and veridical perceptions,

Journal of Theoretical Biology 266 (2010) pp. 504—515.

[23] S. K. Markham, S. J. Ward, L. Aiman-Smith, A. I. Kingon, The Valley of Death as

Context for Role Theory in Product Innovation, The journal of product innovation

management 27(3) (2010) pp. 402–417.
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List of abbreviations and symbols

∈ element of A−1 inverse
N set of natural numbers P (A) probability of event A
R set of real number ∩ intersection
= equal to ∪ union
∅ empty set P(X) power set
∀ for all ∃ exists
< less than > greater than
≤ less than or equal to ≥ greater than or equal to
⊂ proper subset ⊆ subset
⊗ tensor product ab exponent
∼ similarity × multiplication
≡ identical to := equal by definition
{} set x! factorial
f(x) function of x δ Dirac function
(a, b) open interval [a, b] closed interval

∆ difference log logarithm∑
sum of all values in range of series · scalar product

〈x, y〉 inner product ||x|| norm
Ac complement A \B relative complement
lim limit y′ derivative
dy
dx derivative ẋ time derivative

∂f(x,y)
∂x partial derivative

∫
integral

π pi, a constant, π ≈ 3, 14159265358979323846 . . . ∞ infinity symbol
e Euler’s number, e ≈ 2.71828 argmax arguments of the maxima

CRn n categories Critical Realist strategy nCat n categories
CRnSRm n categories Critical Realist with storage ITP Interface Theory of Perception

EIT European institute of Innovation and Technology EU European Union
IFn n categories Interface strategy PPP Private-Public Partnership
IFnS n categories Interface strategy with storage TRL Technology Readiness Level

NASA National Aeronautics and Space Administration UK United Kingdom
SRm critically realistic storage with m categories USA United States of America
SIFm utilitaristic storage with m categories
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Razširjen povzetek v slovenskem

jeziku

Mnogi filozofi in zazavni raziskovalci raziskujejo odnos med našim zaznavanjem in okoljem.

To razmerje med zaznavanjem in objektivno realnostjo imenujemo zaznavna oz. percepcijska

strategija. Predstavimo tri ključne teorije po D. D. Hoffmanu [13]. Najbolj preprosta

teorija zaznav je naivni realizem, ki verjame, da s čuti zvesto zaznavamo dejanskost, ki

ji naše zaznave zato popolnoma ustrezajo. Druga teorija zaznav je kritični realizem, ki

oslabi trditev teorije naivnega realizma: zaznavanje zvesto zaznava del realnosti, ne pa vso

realnost. Vmesnǐska teorija (ali teorija namizja) še dodatno oslabi trditev: percepcija na

splošno ne zaznava nobenega vidika realnosti (D. D. Hoffman, [13]). V magistrskem delu

želim proučiti odnos med temi tremi razredi zaznavnih strategij. Za raziskovanje relativne

ustreznosti odnosov med njimi bomo uporabili evolucijske igre. V povzetku se osredotočimo

samo na ključne lastne rezultate in njihov kontekst; bazične podlage in z njimi povezane

rezultate izpustimo.

Najprej predstavimo evolucijsko igro, ki so jo definirali J. T. Mark et al. [22]. Poglejmo

neskončno populacijo agentov, ki naključno vstopajo v pare, ki tekmujejo v igri dveh igralcev

za izbrani vir. V tej igri mora vsak agent izbrati eno od t ozemelj. Vsako ozemlje vsebuje r

virov (npr. hrano ali vodo), ki zavzema diskretne vrednosti v nizu V = 1, 2, ...,m. Naj bo

rT vektor virov na ozemlju T . Koristnost teritorija T je definirana kot

u(T ) = U(rT ) =
k∑
i=1

Ui(rT,i). (7.6)

V naših raziskavah je koristnost monotona ali Gaussova funkcija.

Iz J. T. Mark et al.[22] reproduciramo matematični model strategij, ki sodelujejo v tek-

movanjih. Ko naivni realist zazna resnične količine virov, nCat kritični realist (CRn) ne

zazna resnične količine virov, ampak jo razvrsti v n kategorij, ki ohranjajo urejenost. Mark

et al. to imenuje nCat agent. V Tabeli 1 so podane podrobnosti o matematičnih modelih
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naivnega realista, nCat kritičnega realista in nCat vmesnǐske strategije.

Elt Naivni realist CRn IFn
W {1, . . . ,m}t {1, . . . ,m}t {1, . . . ,m}t
X W {0, . . . , n− 1}t {0, . . . , n− 1}t
G {1, . . . , t} {1, . . . , t} {1, . . . , t}

P w


0; if 1 ≤ w ≤ β1,

1; if β1 < w ≤ β2,

...

n− 1; if βn−1 < w ≤ m,


0; if 1 ≤ w ≤ β1,

1; if β1 < w ≤ β2,

...

n− 1; if βn−1 < w ≤ m,

A u′ = u+ U(ri), r
′
i = 0 u′ = u+ U(ri), r

′
i = 0 u′ = u+ U(r), r′i = 0

D argmaxp=Pn(w),i∈Gn
p[i] 0 < n− 1 < ... < 1 argmaxp=Pi(w),i∈Gi

p[i]
U U(ri) U(ri) U(ri)

Tabela 7.2: Matematični modeli naivnega realista, CRn in IFn.

J. T. Mark et al. [22] so najprej raziskali tekmovanje med naivno realistično in 2Cat kritično

realistično strategijo (CR2). Za zaznavanje in obdelavo več podatkov je potrebno več en-

ergije. Zato veristična strategija porabi več energije za dosego svojega cilja. Poleg tega so

raziskovali tekmovanje med 3Cat kritičnim realistom (CR3) in 3Cat vmesnǐsko strategijo

(IF3).

Slika 7.3: A) Rezultati evolucijske igre med naivnim realistom in kritičnim realistom
z enim samim virom. B) Rezultati evolucijske igre med CR3 in IF3 z enim samim
virom. [Vir: Reproducirano iz [22]]

Slika 7.3 A) prikazuje, kako stroški informacij in prag zaznave, ki ga kritični realist uporablja

za dojemanje sveta, vplivajo na tekmovanje kritičnega realista in naivnega realista. Bela

barva predstavlja vrednosti parametrov, kjer kritičen realist izpodrine naivnega realista,

črna, kjer naiven realist izpodrine kritičnega realista in siva, kjer obe strategiji stabilno

sobivata. Kot je razvidno iz slike, kritične realistične strategije lahko izpodrinejo naivno

realistično strategijo. Celotna resnica ni vedno uspešneǰsa od poenostavljene resnice. V

nadaljevanju so Mark et al. primerjali naslednje 3 strategije: naivno realistično strategijo,

3Cat kritično realistično strategijo, in 3Cat vmesnǐsko strategijo. Mi reproduciramo njihove
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rezultate le s tekmovanjem med CR3 in IF3. Na sliki 1.B) lahko vidimo rezultate: vmesnǐske

strategije lahko evolucijsko premagajo kritične realistične strategije. Resnica, v celoti ali

poenostavljna, ni vedno uspešneǰsa od zaznav, ki spoznavanje dejanskosti nadomestijo z

neposrednim osredotočanjem na koristnost zaznav.

V nadaljevanju predstavimo lastno nadaljevanje razmislekov in obravnavamo strategije za-

znav, ki imajo možnost shranjevanja vǐska virov. Podlaga za uvedbo takih strategij je

evolucijska: neka mutacija organizma IF3, ki sicer utilitaristično zaznava količino vira, lahko

razvije možnost shranjevanja prekomerne količine vira. V tem primeru se mora odločiti,

ali bi vir potrošila ali shranila in za odločitev potrebuje verodostojno zaznavo o njegovi

količini: je evolucijsko motivirana za veristično zaznavo. Količina vira v shrambi se giblje

od 1 do 100. Pri izbiri ozemlja je agentov cilj čim večja koristnost uporabljenega vira, vǐsek

pa (če je v shrambi prostor), shrani za prihodnost. To pomeni, da če je shramba prazna,

agent izbere teritorij z največjo količino vira ter najprej izkoristi del, ki mu prinaša največjo

koristnost, potem pa vǐsek shrani. Če pa je shramba polna, potem agent izbere teritorij,

ki mu prinaša največjo koristnost. Te strategije igro začnejo s prazno shrambo in jo v igri,

kadar je vira v okolju preveč, polnijo. Da bi bilo shranjevanje v celoti izkorǐsčeno, moramo

v model vnesti še en parameter - življenjska doba l spremlja število interakcij med dvema

konkurenčnimi strategijama, tj. kako pogosto se lahko dva predstavnika potegujeta za neko

ozemlje in izkorǐsčata prednost hrambe prevelike količine ali dopolnitve nezadostne količine

virov.

V Tabeli 2 so podane podrobnosti o matematičnih modelih nCat kritičnega realista s

shrambo in nCat vmesnǐske strategije s shrambo.

V nadaljevanju proučujemo tekmovanja med IF3 in CR3SR2 in med IF3S in CR3SR2.

Slika 7.4: A) Rezultati evolucijske igre med CR3SR2 in IF3 z enim samim virom in
življenjsko dobo 4 leta. B) Rezultati evolucijske igre med CR3SR2 in IF3S2 z enim
samim virom za življenjsko dobo 4 leta. C) Rezultati evolucijske igre med CR3SR2
in IF3S z enim samim virom za življenjsko dobo 16 let. [Vir: lasten]

Slika 2.A) prikazuje rezultate tekmovanja med IF3 in CR3SR2 za dane vrednosti življenjske

dobe l = 4 interakcij, pri čemer je korist shranjevanja največja. Vidimo, da CR3SR2
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Elt CR3SR2 IF3S
W {1, . . . ,m}t+1 {1, . . . ,m}t+1

X {0, . . . , 2}t × {0, 1} {0, . . . , 2}t × {0, 1}
G {1, . . . , t} {1, . . . , t}

P Pc(t) =


0; if 1 ≤ t ≤ βc,

1; if βc < t ≤ γc,

2; if γc < t ≤ m.

Pu(t, s) =


0; if 0 ≤ Uc(t, s) ≤ βu,

1; if βu < Uc(t, s) ≤ γu,

2; if γu < Uc(t, s).

Ps(s) =

{
0; if 1 ≤ s ≤ βs,

1; if βs < s ≤ m,

A s′ =

{
min(smax, ri + s− r∗); if ri + s > r∗,

max(0, ri + s− r∗); if ri + s ≤ r∗,
s′ =

{
min(smax, ri + s− r∗); if ri + s > r∗,

max(0, ri + s− r∗); if ri + s ≤ r∗,

u′ = u+

{
U(r∗); if ri + s > r∗,

U(ri + s); if ri + s ≤ r∗,
, r′i =

0

u′ = u+

{
U(r∗); if ri + s > r∗,

U(ri + s); if ri + s ≤ r∗,
, r′i =

0

D

{
0 < 1 < 2; if 1 ≤ s ≤ βs,

0 < 2 < 1; if βs < s ≤ m,
0 < 1 < 2

U U(ri) U(ri)

Tabela 7.3: Matematični modeli od CR3SR2 in IF3S.

izpodrine IF3 (črna barva) za vse pregledane nizke vrednosti stroškov skladǐsčenja in soob-

staja za vse vǐsje. Čeprav je CR3SR2 pri izbiri ozemlja počasneǰsi, mu skladǐsčenje daje

prednost pred utilitarističnim IF3, kadar so stroški skladǐsčenja primerljivi z uporabnostjo

terena. Slika 2.B) prikazuje rezultate tekmovanja med CR3SR2 in IF3S. Slika prikazuje

uspeh inovativne utilitaristične vmesnǐske strategije nad inovativnim kritičnim realistom,

ki je poudarjena z večjim številom povprečnih interakcij med organizmi: v primerjavi s

precej primerljivim uspehom obeh strategij v štirih interakcijah na sliki 2.B), CR3SR2 pri

16 interakcijah na sliki 2.C) komaj ima sposobnost preživeti, pri 24 interakcijah pa ga IF3S

izpodrine za vse vrednosti parametrov.

J. T. Mark et al. so v svoji raziskavi odkrili, da bolj realistične percepcije niso nujno

uspešneǰse. Vendar smo ustvarili pogoje, v katerih naravna selekcija daje prednost (poeno-

stavljenim) verističnim dojemanjem. Definirali smo strategije, ki shranijo prekomerne

količine virov, in proučevali evolucijsko igro med strategijama IF3 in CR3SR2. Ob nizkih

stroških shranjevanja vira lahko inovativne poenostavljene veristične percepcije izpodrinejo

veristične zaznave, tudi če imajo slednji prednost pred prvo izbiro ozemlja. V nadaljevanju

smo proučili, kaj se zgodi, ko konkurirata veristična strategija s shrambo in vmesnǐska

strategija s shrambo. Naše simulacije kažejo, da vmesnǐska strategija s shrambo izpodrine

kritičnega realista s shrambo.

Naš model prikazuje tehnološko dolino smrti kot samoporarajoči evolucijski pojav v evolu-

cijskih okoljih, v katerih se agentov model sveta razlikuje od resnične strukture sveta, up-

orabnost virov pa je po količini virov nemonotona in agenti razvijajo svojo percepcijo (tj.
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svoj model), postopek odločanja in svoja dejanja, in pridobivajo evolucijsko prednost pred

tistimi, ki bodisi dojemajo manj realistično (torej ne morejo inovirati) bodisi manj utilitar-

istično (s čimer ne morejo maksimirati evolucijske uporabnosti inovacij).
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