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Summary 

Spatial abilities which are described by Linn and Petersen (1985) as “skill in representing, 
transforming, generating, and recalling symbolic, non-linguistic information“ (Linn & 
Petersen, 1985) are as such not trained nor they are taught in schools. They are left to develop 
naturally and on their, aided perhaps by some of the activities in childhood which have been 
shown to be predictors of highly developed spatial abilities, such as playing with construction 
toys, gender, math scores, previous experience in design-related courses such as drafting, 
mechanical drawing etc. (Sorby & Baartmans, 2000). Nevertheless, the importance of highly 
developed abilities for STEM (science, technology, engineering and mathematics) students 
has been scientifically proven (e.g. Gohm, Humphreys, & Yao, 1998; Humphreys, Lubinski, & 
Yao, 1993; Lohman, 1988, 1994a, 1994b; Smith, 1964), what directly implies that spatial 
abilities can have a significant impact on the success in not only studying STEM subjects, as 
well as success in STEM careers.  

Throughout the years and worldwide researchers have recognised the value and correlation 
between success in STEM fields an highly developed spatial abilities and therefore attempted 
to develop exercises or whole experimental programmes for enhancement of spatial abilities 

(e.g. Sorby & Baartmans, 2000; Martín‐Dorta, Saorín & Contero, 2008; Güven & Kosa, 2008) 
with the aim of helping STEM students develop their spatial abilities, the success of which has 
been verified through positive correlation between spatial pre-tests and post-tests. This 
thesis outlines the developed experimental programme for spatial abilities enhancement.  

The developed experimental programme employing GeoGebra 5 ran over the course of four 
weeks (1.5 hour per week) and was conducted at the Faculty of Science and Education in 
Mostar, Bosnia and Herzegovina. The sample consisted of first-year students, with 35 male 
and 17 female in experimental and 33 male and 19 female in control group. The programme 
content entailed following topics: 1) introduction to GeoGebra 5 and sketching basic 
geometrical objects in the software, 2) measuring wooden objects, sketching them on paper 
and then in GeoGebra and vice versa, 3) working with reflection and rotation in 2D using 
already designed GeoGebra apps, 4) solving various mathematical problems which require 
spatial visualisation by first sketching them on paper and then in GeoGebra.  

For pre-testing Smith and Whetton (1988) spatial test has been used, atop of which a 
background questionnaire has been administered, which also contained items hypothesised 
as possible spatial abilities predictors. For post-test Smith and Whetton (1988) test has been 
administered once again, along with Newton and Bristoll (2009) test. Dependent variables 
were 1) students’ success during the experimental programme and 2) students’ results on the 
spatial abilities pre-test and post-test, whereas the independent variable was students' 
gender.  

With the application of ANCOVA analysis it has been shown that average score was 55.89 for 
the experimental and 53.36 for control group (F=54.572, df=1, p=0.000, ηp

2=0.406), from 
what it can be concluded that differences between the control and experimental group at 
initial testing of spatial abilities are not statistically significant. Results also showed that with 
the experimental group a statistically significant jump in performance on the post-test has 
occurred (t=-9.126, df=38, p<0.05), whereas with regard to the control group no statistically 
significant changes in performance have been noted (t=1.431, df= 43, p>0.05 ). Similarly, 



 
 

statistically significant correlation between the scores of the control group on the initial and 
final Smith and Whetton (1988) test has also been found (r=0.952; p<0.01), as well as between 
the scores of the experimental group on the initial and final Smith and Whetton (1988), where 
a significant jump in performance has been noted (r=0.833; p<0.01). No statistically significant 
differences have been found either with regard to gender (F=3.904; df=1; p=.052) or between 
the experimental and control groups and gender (F=1.688; df=1; p=.198). Statistically 
significant correlations between the average mathematics grade in high school and any scores 
of any of the two groups has been found between the total score on the final Newton and 
Bristoll (2009) spatial test and average mathematics grade (r=0.272; p<0.05). 
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1 Foreword 
 

High school education worldwide is designed to give students broad education in a variety of 

subjects in order for them to be as prepared as possible for their university studies and hence 

focusing on a specific field. It has been attempted to take into consideration all factors which 

contribute to their readiness for their university studies and educational programmes keep 

being reviewed and tailored more to the needs of high school students for their future 

education.  

Students who will enrol one of the universities focusing on science, technology, engineering 

and mathematics (in further text abbreviation STEM will be used) need to have certain 

abilities developed which will enable them to more easily understand and apply the university 

material which will be presented to them. Students who decide on enrolling one of 

universities falling into the STEM category for the most part show their inclination, interest 

and abilities pertaining to natural science already in high school, which are for the most part 

evident in high grades in mathematics, computer science and physics, which is a common 

conjecture when parents advise their children on their further course of education. There are 

however other abilities which fall into the equation and which are not assessed in high school 

or are addressed directly and one of them are spatial abilities.  

Spatial abilities are honed through e.g. mathematical and physics problems but also in 

everyday life the students can find themselves in situations in which they need to employ 

their spatial abilities and through those situations also work on developing them. Perhaps 

they wish to redecorate their room and need to visualise the furniture on different positions 

and be able to visualise the look of the entire room by applying their spatial abilities in 

assessing the amount of space each piece of furniture is going to take and mentally rotating 

it. Perhaps they are parking their car and need to be perfectly aware of the dynamics of car 

movement and also space around them in order to make it fit into a certain spot. Or perhaps 

they are walking through a foreign town and need to know from which direction they came 

and be aware that the bridge they crossed some time ago is now behind their back because 

of the combination of left and right turns they took. A person who is not studying at a STEM 

university can find himself in one of these situations, but those with developed spatial abilities 

will be more equipped to solve them fast and in an efficient manner. And students with well-
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developed spatial abilities are better equipped for the challenges which the STEM universities 

will present them.  

Their development is often left to a chance or is a side-effect of other practices, but spatial 

abilities as such are not directly trained or addressed. The correlation between well-

developed spatial abilities and success at STEM universities has been shown by various 

researchers. Consequently, being such a valuable tool for their future success at university, it 

would be of great value to students to have the opportunity to develop and enhance their 

spatial abilities.  

Researchers worldwide have used various tools for spatial skills training, from building blocks, 

paper and pencil method to geometry software and have shown that all of these various tools, 

if used within a carefully developed spatial skills training programme, enhance spatial 

abilities. The emphasis is placed on the specificity  of  the exercises employed, all of which 

when combined, result in an experimental programme which offers students a complete, step 

by step programme leading towards developing their spatial abilities, each to their individual 

extent, and thus also to more successful university studies.  

This research aims at exactly this, in hope that the value of spatial abilities for not only STEM 

students but also in pre-university education in general, as preparation for university study, 

will be recognised, taken into account and addressed as an issue.  
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2 Definitions and different spatial skills models 
 

Spatial ability refers to “skill in representing, transforming, generating, and recalling 

symbolic, non-linguistic information” (Linn & Petersen, 1985) 

Myriad of different theories and definitions of spatial abilities components are offered by 

experts, but it must also be taken into account how they evolved throughout time given new 

research results and new findings, which contribute to the already existing models and either 

enrich them or add an entirely new dimension. In fact, factor structure of spatial ability has 

been a topic of active research since 1940s and is continuing since (Yilmaz, 2009). In this 

section those definitions which left an impact on the scientific world, but also those which are 

relevant for the topic of this thesis, will be outlined.  

According to Piaget’s theory, spatial visualisation abilities are acquired throughout three 

specific developmental stages. Children first learn topological spatial visualisation, i.e. being 

able to differentiate between objects’ topological relationships with each other, what 

includes the concepts of closeness, location within a group and isolation. Second they acquire 

projective representation, i.e. the ability to visualise the appearance of a specific object from 

a different perspective. And thirdly the children learn combining the lastly acquired abilities 

with the concept of measurement (Sorby & Baartmans, 2000). His work also suggests that 

children’s spatial ability reaches its final developmental phase at the age of twelve (Piaget & 

Inhelder, 1971). The authors also defined two types of spatial ability during the child’s 

interaction with the environment. Perceptual spatial ability is being defined as the ability to 

perceive spatial relationships between objects, whereas conceptual spatial ability refers to 

the ability to conceive and manipulate a mental model of the environment.  

The authors suggested that the three aforementioned stages through which children’s spatial 

abilities development passes are preoperational, concrete operational and formal 

operational stages, respectfully. More specifically, in the preoperational stage, younger than 

six years old, the children’s internal model is egocentric. They learn how to locate objects in 

their environment with respect to themselves and grasp limited topological spatial 

relationships, i.e. separateness, proximity etc. In the second, concrete operational stage, 

which occurs between ages seven to nine years old, they are developing a cognitive map with 
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a reference frame, i.e. they are able to visualise view from some other point beside 

themselves, which allows them to visualise how an object would look from a different point. 

The children also begin to develop projective relations such as in front/behind, left/right, 

broadening up their spatial abilities to understand more complex topological relations. In  

the last formal operational stage, which begins around the age of eleven, they develop a 

coordinate reference frame, i.e. mental network of locations in fixed positions relative to each 

other. Estimating relative distances through straight line and proportional scale reductions 

fall into this last stage and transition from projective to Euclidean space occurs (Piaget & 

Inhelder, 1971).  

More recently, Huttenlocher and Newcombe (1999) suggest that spatial understanding 

develops earlier than Piaget suggested in his work. According to the authors infants six 

months old are able to use so called dead reckoning skills in order to understand the locations 

of objects around them, which is an inborn ability of understanding distances. Babies twelve 

months old are able to understand distances so that they are able to find hidden stimuli, 

whereas by eighteen months old they are able to understand navigate simple trajectories. 

Although Piaget proposed that children’s ability to use fixed points in order to estimate 

distance and location does not develop until age nine or ten, Huttenlocher and Newcombe 

propose the age mark for this ability to be around two years old. The authors further propose 

that by three years old the children are able to utilise simplified maps and models and 

continue their mental development in spatial learning by the time they are nine or ten, given 

that they are encouraged to do so (Huttenlocher & Newcombe, 1999).  

Spatial ability research evolved from research on intelligence. Whereas Spearman (1927) in 

the UK focused on intelligence as a single factor (Burt, 1949; Vernon, 1950), researchers in 

the US were more of the opinion that intelligence was composed of multiple factors 

(Thurstone, 1950; Cattell, 1971; Guilford, 1967). For the researchers it was difficult to 

distinguish spatial ability factors from intelligence because some of the factors are strongly 

connected to the concept of general intelligence (Mohler, 2008). According to Spearman 

(1904, 1927), intelligence is a reflected of “mental energy” or “intellectual capacity” which is 

present in a specific degree by every human being, is hereditary and cannot be changed 

through education. Apart from the general intelligence factor ‘g’, the author also presented 
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specific intelligence factors ‘s’. Spearman’s two-factor intelligence model has been confirmed 

via factor analyses, although through subsequent research new factors have been discovered, 

which have been considered not exactly general but not completely specific either (Zarevski, 

2000, p. 35-36). 

In 1921 Thorndike published a paper in which he outlined important distinctions between 

three broader classes of intellectual functioning, arguing that, for that time standard, 

intelligence tests measured what he called ‘abstract’ intelligence. While agreeing that 

‘abstract’ intelligence was just as important, he also outlined ‘mechanical’ and ‘social’ 

intelligence being equally important. His definition of ‘mechanical’ intelligence was as the 

ability to visualise relationships between objects and grasp how the physical world 

functioned. His definition of ‘mechanical’ intelligence is held for one of the foundations of 

future spatial ability research (Thorndike, 1921; according to Mohler, 2008).  

Around the same time El Koussy (1935) examined spatial intelligence and stroke foundations 

for its measurement. He found evidence for what he called ‘factor K’ existence, which he 

defined as the ability to obtain and utilise spatial imagery. Kelley (1928) proposed that 

manipulation of spatial relations was another distinct factor within spatial abilities category. 

Few years later Thurstone (1938) defined a ‘space’ factor which he explained as the ability to 

perform mental operations on spatial or visual images. His new findings have led him to 

propose that intelligence consisted of several primary mental abilities and he was one of the 

first to propose and demonstrate these factors through his Multiple Factors theory. It 

identified seven primary mental abilities, comprising of: associative memory, number facility, 

perceptual speed, reasoning, spatial visualisation, verbal comprehension and word fluency. 

His new theory resulted in intelligence tests which yield a single score by adding scores 

awarded in several abilities assessment (Mohler, 2008).  

Thurstone later identified three primary spatial factors within spatial ability (Thurstone, 1950) 

the names for which were more descriptively replaced by Smith (Smith, 1964) as follows: (S1) 

Mental rotation was defined as the ability to recognise an object if it has been moved or when 

viewed from a different angle, (S2) spatial visualisation as the ability to recognise the parts of 

an object if it has been moved from its position and (S3) spatial perception as the ability to 
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use one’s own body orientation when relating to questions regarding spatial orientation 

(Mohler, 2008).  

Sometime later P. E. Vernon proposes a four-level empirical hierarchical model. At the sheer 

top he placed cognitive ability. On the second level he placed verbal-educational and spatial-

mechanic ability. Verbal-educational factor he divided on the third level into verbal and 

numerical abilities, whereas spatial-mechanic ability he divided on the third level into spatial 

abilities and manual ability to use mechanical information (Vernon, 1950: according to 

Zarevski, 2000, p. 37). On level four he placed specific factors. Vernon’s proposed model was 

partially verified by Reuchlin and Valin research (1953), who proposed three broad, second-

level factors: perceptive reasoning, symbolic reasoning and educational factor. The 

aforementioned factors build together a general cognitive factor (Zarevski, 2000, p. 37).  

French (1951) proposed a classification which included 59 intelligence factors, whereas in 

1976 Ekstrom et al (1976) identified two components of spatial ability: spatial orientation and 

spatial visualisation. The authors defined spatial orientation as the ability to perceive spatial 

patterns or to maintain orientation with respect to objects in space, whereas they defined 

spatial visualisation as the ability to manipulate or transform the image of spatial patterns 

into other arrangements or the mental rotation of an object or objects in short term memory 

and performance of a series of operations. According to McGee (1979b), spatial orientation 

involves the comprehension of arrangement of elements within a visual stimulus pattern, 

aptitude for remaining unconfused by random orientations in which a configuration may be 

presented and the ability to determine spatial relations in which the body orientation of the 

observer is an essential part of the problem. Also according to McGee, spatial visualisation is 

an ability to mentally manipulate, rotate, twist or invert pictorially presented spatial visual 

stimuli. This ability involves a process of recognition, retention and recall of a configuration 

in which there is a movement among the internal parts of the configuration, or of an object 

manipulated in 3D space or the folding and unfolding of flat patterns (McGee, 1979a; 

according to Mohler, 2008).  

Guilford proposed in 1967 a complex model of human intelligence in which he presents 120 

independent hypothetical factors of cognitive abilities. Each of the factors has been assigned 

a unique three-letter label, where one side of the cube refers to operation, second to content 
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and third to product. The model comprises of the following operations: cognition (C), 

convergent production (N), evaluation (E), divergent production (D) and memory (M). With 

regard to content, the model comprises of: figurative (F), symbolic (S), semantic (M) and 

behavioural (B). And lastly with regard to product the model comprises of: units (U), classes 

(C), relations (R), systems (S), transformations (T) and implications (I). The factors have been 

defined operationally, i.e. in terms of measurement techniques and the three-letter unique 

label places them on a specific location in the 3D space (Zarevski, 2000; p.40).  

According to Linn and Petersen (1985), spatial ability refers to “skill in representing, 

transforming, generating and recalling symbolic, non-linguistic information” (Linn & Petersen, 

1985). The authors outline three categories of spatial abilities: spatial perception, mental 

rotation and spatial visualisation. In their meta-study, focusing on gender differences with 

regard to spatial abilities categories, the authors outlined psychometric and cognitive 

perspective with regard to each category (Linn & Petersen, 1985).  

J. B. Carroll, an American psychologist who was influenced by the work of L. Thurstone, 

reanalysed over 400 data sets of cognitive ability test scores and based on his conclusions in 

his book, “Human Cognitive Abilities: A Survey of Factor Analytic Studies (1993)”, proposed a 

three-stratum model of human cognitive abilities, which suggests that the concept of 

intelligence can be portrayed as a hierarchical model of three strata. Stratum three of the 

general intellectual abilities is referred to the G factor, which accounts for the correlations 

among the broad abilities at Stratum two. Stratum two or broad abilities refers to eight broad 

abilities: fluid intelligence, crystallised intelligence, general memory and learning, broad visual 

perception, broad auditory perception, broad retrieval ability, broad cognitive speediness and 

processing speed. Stratum one or specific level refers to more specific factors grouped under 

the stratum two factors (Carroll, 1993). Spatial ability in his model lies in between verbal and 

mathematical abilities.  

Furthermore, Carroll has conducted a comprehensive review of factor analytic studies of 

spatial ability and has proposed five main clusters: visualisation (Vz), Spatial Relations (SR), 

Closure Speed (CS), Flexibility of Closure (CF) and Perceptual Speed (P). Out of all these factors 

Carroll pointed out that the CF factor exists, “the psychometric evidence for the factor is 

somewhat ambiguous” (Carroll, 1993; p. 338). Carroll’s three-strata model combines and 
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brings together two very influential intelligence concepts: Spearman’s g-factor model and 

Cattell’s fluid and crystallised intelligence model. The factors on the second level categorise 

primary abilities into 8 broad domains: 1) fluid intelligence includes primary induction factors, 

reasoning, problem solving and visual perception factors, 2) crystallised intelligence focuses 

primarily on language and some of the factors categorised here are oral fluency, language 

development and comprehension of written text, 3) general memory and learning refers to 

associative memory, spontaneous retrieval, meaningful memory and memory span, 4) broad 

visual perception can be described through the primary factors of visualisation, spatial 

relations, mechanical knowledge and perceptual speed, 5) broad auditory perception includes 

factors such as speech perception and musical discrimination, 6) broad retrieval ability 

comprises of idea fluency, originality, expression fluency, associative fluency, figural fluency 

and problem sensitivity, 7) broad cognitive speed refers to perceptive speed, writing speed 

and numerical facility factor and 8) processing speed refers to the processing speed within 

elementary cognitive processes (Carroll, 1993).  

Lohman (1988) proposes a model for spatial ability consisting out of three factors: spatial 

visualisation, spatial orientation and spatial relations. The author defines spatial visualisation 

as the ability to understand mental movements in a 3D space or to manipulate objects 

mentally. Spatial orientation is defined as the ability to track changes in the orientation of 

visual stimuli which requires mental rotation or configuration. Spatial relation is defined by 

the speed in manipulating simple visual patterns like mental rotation fast and correctly 

(Lohman, 1988). While Lohman acknowledges the existence of other factors, he argues that 

they are not central to the bulk of the concept of spatial abilities. He defines spatial 

visualisation as the ability to comprehend imaginary movements in a 3D space, i.e. to 

manipulate objects mentally. The author emphasises that this factor is defined by complex 

spatial tasks which require a sequence of transformations of a spatial representation, e.g. 

folding and unfolding a piece of paper which, when folded, has been perforated more than 

once. He defines spatial orientation as the ability to remain unconfused by the changing 

orientations in which the object may be presented. Essential nature of this factor is the 

awareness of whether the object is to the right or left, higher or lower, nearer or farther with 

regard to another.  
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In one of his later works, the author defines spatial ability as the “ability to generate, retain, 

retrieve and transform well-structured visual images” (1996). He points out that there are 

several spatial abilities, whereas each emphasises different aspects of the process of image 

creating, how it is stored, accessed and consequently transformed. Lohman argues that 

spatial abilities are “pivotal constructs of all models of human abilities”. Hierarchical models 

place verbal-educational and spatial-visualisation factors just under the general ability since 

it is held that the verbal-spatial dimension requires more variance than any other dimension 

(Lohman, 1996).  

With regard to the spatial orientation factor, Hegarty and Waller (2004) interpreted it as the 

ability to make egocentric spatial transformations in which one’s one viewpoint changes with 

regard to the environment, whereas the relationship between object-based and 

environmental frames of reference does not change, e.g. visualising how an object would look 

from a different angle. Consequently, one of more recent tests developed by Kozhevnikov 

and Hegarty (2001) contains a task for the subjects in which it is required of them to imagine 

themselves facing a particular direction on a map or within an array. Spatial relations are more 

specifically defined as the ability to make object-based spatial transformations in which the 

positions of the objects are moved with regard to the environment, although one’s own 

viewpoint does not change. Measurement of the development of this factor also often entails 

time-limited performance of 2D and 3D mental rotations (Hegarty & Waller, 2004).  
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 Spatial visualisation Spatial orientation Spatial relations 

Definition   ability to comprehend 

imaginary movements 

in a 3D space  

 ability to manipulate 

objects in imagination  

 defined by 

complicated spatial 

tasks which require a 

sequence of 

transformations of a 

spatial representation 

and more complex 

stimuli 

 ability to keep track of 

the changing 

orientations in which a 

spatial configuration 

may be presented 

 estimating whether one 

object is to the right or 

left, higher or lower or 

nearer of farther than 

another  

 ability to make 

egocentric spatial 

transformations in 

which one’s egocentric 

reference frame 

changes with respect to 

the environment, while 

the relation between 

object-based and 

environmental frames 

of reference does not 

change  

 ability to mentally 

rotate a spatial object 

as a whole fast and 

correctly (Colom et 

al., 2001).  

 ability to make object 

based spatial 

transformations in 

which the positions of 

objects are moved 

with respect to an 

environmental frame 

of reference, but 

one’s egocentric 

reference frame does 

not change  

Example imagine the folding and 

unfolding of a piece of 

paper which, when folded, 

has been perforated one 

or more times 

imagine how a shape would 

appear from a different 

perspective and then to 

make a judgment from that 

imagined perspective 

Spatial relations tests 

require speeded 

performance of 2D and 

3D mental rotation items 

 

Table 1 Lohman’s model of spatial abilities (Lohman, 1979) 

Apart from spatial ability factors and different models, specific terminology which is often 

employed when referring to the topic of spatial abilities, visualisation and visual imagery 

should be mentioned. Presmeg (1997) argues that visualisation includes processes of 

constructing and transforming both visual imagery and all spatial inscriptions which are a part 

of a mathematical activity. Roth (2004) explains the concept of inscription as graphical 

representations which are a focus of scientific practice, whereas according to Presmeg (1997) 

a visual image is a mental construct depicting visual or spatial information.  

Mathematical visuality is described by Presmeg (1986) as the extent to which a person prefers 

visual methods of approach to mathematical problems to others, whereas teaching visuality 
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is described as the extent to which a teacher uses visual presentation while teaching 

mathematics (Presmeg, 1986).  

One other concept which is the focus of this dissertation is certainly spatial thinking. 

According to Newcombe (2010), spatial thinking concerns the locations of objects, their 

shapes, their relations to each other, and the paths they take as they move. A research done 

within the scope of project Talent in the US and in which 400 000 subjects participated 

showed that there is a high probability that subjects who had high scores on spatial tests in 

high school are going to study science, technology, engineering or mathematics, even after it 

was observed these subjects had high scores in verbal and mathematical skills (Newcombe, 

2010).  

And lastly, let us bring into connection with all these concepts also the concept of software 

visualisation and its application. There are many visualisation tools which have been 

developed by software designers for the sole purpose of exploring the software code, which 

use graphical representations for easier navigation, analysis and presentation of the 

information pertaining to software in order to enhance better understanding of it, and ergo 

enable the users to work with the software more quickly and efficiently in connection with 

this we also find the concept of software exploration tools which offer graphical 

representations of software structures with the aim of helping the user develop a mental 

model of the software. One of the most commonly used taxonomies employed to classify 

software visualisation tools has been written by Price, Baecker & Small (1993). This taxonomy 

is based on a generic model of a software visualisation tool. It employs the following 

categories: scope (range of software which can be visualised), content (visualised aspects), 

method (how the process of visualisation works), interaction (user's interaction with 

visualisation) and effectiveness (Storey, 2003: in Zhang, 2012).  
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3 Measuring spatial abilities and its factors 

Throughout years of researching in this field, spatial abilities have been measured using four 

different types of tests: performance tests, paper-and-pencil tests, verbal tests, and dynamic 

tests on computers, whereas the performance tests have been the forerunners of all other 

types of tests, such as block manipulation or paper folding tasks which Binet and Simon (1916: 

according to Lohman, 1996) presented to children. Paper-and-pencil spatial abilities testing 

mostly consisted of several different types of items and were tested on young children of 

approximately the same age (Lohman, 1996).  

To cover all spatial abilities tests in use worldwide would be beyond the scope of this work. 

However, several tests which have been used in studies relevant for the topic of this work will 

be outlined in the following sections. 

3.1 Mental Rotation Test (MRT) 

The MRT test requires subjects to compare pairs of 3D objects which are often rotated a 

certain angle and state if they are the same image or if one is a mirror image. The subjects are 

graded with regard to their ability to correctly and quickly identify mirror images. This test 

began its use in 1971 with Roger N. N. Shepard and Jacqueline Metzler, who conducted a 

chronometric research aiming at testing the mental rotation of 3D objects. Shepard 

hypothesised that this task would be executed by the participants by mentally rotating real 

objects and the results confirmed his hypothesis (Shepard & Metzler, 1971). This test has 

been redrawn and modernised since its first use and has been widely used by researchers as 

a tool for measuring spatial abilities level.  
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Figure 1. A sample from the MRT test.  

Retrieved on the 14th of January, 2017 from 
http://mercercognitivepsychology.pbworks.com/w/page/61206659/Mental%20Rotation 

  

3.2 The Differential Aptitude Test: Space Relations (DAT:SR) 

The test itself consists of 50 items. It is required of the participants to choose the correct 3D 

object from four offered solutions which would result from folding the given 2D form.  

In a 20-year longitudinal research done by Shea et al in 2001 among intellectually talented 

adolescents DAT:SR was one of the tests used, apart from using the DAT:MR (Mechanical 

Reasoning). It has been found that those participants whose favourite subject at school were 

math/science and who had stronger spatial abilities when compared to their verbal abilities 

were more likely to be found in engineering, computer science and mathematics occupations. 

Hence the authors concluded that spatial ability provides information for predicting the 

educational-vocational tracks which the students chose themselves. One drawback of this 

research in this particular aspect is that the sample consisted of intellectually talented 

individuals (Shea et al, 2001).  

Gorska and Sorby (2008) administered during the school year 2005/06 an adapted version of 

the DAT:SR among students of middle and high school levels in the US. Average scores on this 

adapted version of the test were 50.4% for middle school students and 60.2% for high school 

students, with no gender differences observed for either schooling level and the Cronbach 

alpha indicated a reasonable test reliability (Gorska & Sorby, 2008). 
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3.3 Purdue Spatial Visualisation Test; Rotations (PSVT:R) 

The original PSVT test consisted of three subtests: Developments, Rotations and Views and 

has been developed by Guay in 1976. It consisted of 36 items with 12 in each subtest. The 

PSVT:R is an extended version of the subtest Rotations, consists of 30 items with 13 

symmetrical and 17 non-symmetrical pictures of 3D objects which are drawn in a 2D format 

(Maeda & Yoon, 2013).  

In this test an object is shown which is then rotated in space for a certain amount. Second 

objects shown and it is required of the participant to mentally rotate this second object by 

exactly the same amount as the first object and then choose the correct picture (Sorby et al, 

2014). The PSVT:R is predominantly used in educational research, particularly for the research 

in STEM disciplines, while MRT (Mental Rotation Test) has been often used for research in 

psychology and social studies. The popularity of use of the PSVT:R is according to Maeda and 

Yoon (2013) due to the following reasons: 1) research has shown strong reliability of the test 

and the valid evidence to support its use, 2) the ability required to solve the tasks outlined in 

the PSVT:R correspond to the abilities required to solve tasks often found in STEM disciplines 

(Bodner & Guay 1997; Yue 2004: according to Maeda & Yoon, 2013). 3) the test contains 

certain items which are by its difficulty enough to serve as a differentiation measure to 

distinguish between STEM students and students of other disciplines by their level of mental 

rotation ability (Black 2005; Yue 2006, according to: Maeda & Yoon, 2013), 4) the test has 

been cited as the most useful tool for measuring mental rotation ability which the most 

incorporates holistic or gestalt spatial thinking process and the least the analytic or analogical 

spatial thinking (Black 2005; Branoff 1998; Guay et al. 1978: according to Maeda & Yoon, 

2013). 5) the test is available to researches for free and it is easy to score it because of its 

multiple choice format (Maeda & Yoon, 2013). 
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Figure 2. A sample from the PSVT:R test.  

Retrieved on the 14th of January, 2017 from https://www.researchgate.net/figure/268982370_fig4_Figure-4-Purdue-
Spatial-Visualization-Test-Rotations-PSVTR-example-problem-Guay 

  

3.4 Mental Cutting Test (MCT) 

This test measures the ability to visualise a cross-section of an object which has been cut by 

an imaginary plane. The participant is presented with an object and a plane which should be 

used for cutting on the left side and then needs to choose the correct cutting outcome out of 

five offered solutions (Sorby et al, 2014). The test itself consists of 25 problems with the 

maximum score of 25 points. In the test there are two types of problems: pattern recognition 

problems and quantity problems. Problems falling into the first category consist of different 

alternatives of possible cross sections, whereas the participant can come to the right solution 

by recognising the pattern of the section of the object and problems falling into the second 

category consist of possible solutions the cross sections of which are all similar and therefore 

in order to find the right solution one needs to mentally compare length, ratios and angles. 

Objects used in this test have complicated and unusual forms (Németh & Hoffmann, 2006), 

which is why it is difficult to geometrically recognise the solids even if they have been 

recognised topologically (Tsutsumi, 2004). 

In the standard version of the test, after recognising and reviewing the constructional 

elements of the solid such as the vertex, edges and plane, the subject needs to recognise the 

relative location of the plane which will be used for cutting. In his research, Tsutsumi et al 

(1999) observed that subjects which had low scores did not seem to be able to correctly 
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recognise the solid in the test and its plane and were consequently unable to visualise the 

correct solution. The researchers tried to make the subjects make a sketch which might help 

them in this task and offer the proposition that if intersecting lines were added to the picture 

of the test solid, that it might help the subjects to come to the correct solution (Tsutsumi, 

2004).  

 

 

 

 

Figure 3. A sample from the MCT test.  

Retrieved on the 14th of January, 2017 from https://www.researchgate.net/figure/268982370_fig1_Figure-1-Mental-
Cutting-Test-MCT-example-problem-CEEB-1939 

 

3.5 Spatial Test EG by I. MacFarlane Smith  
 

This test has been published by the National Foundation for Educational Research in England 

and Wales (N.F.E.R.) and it deals with 2D material. It consists of six sub-tests, whereas each 

sub test is preceded by a practice test. The sub-tests are: fitting shapes, form recognition, 

pattern recognition, shape recognition, comparisons and form reflections. The maximum 

time given for its completion is cca one hour (Lean & Clements, 1981).  

 

3.6 Spatial Test II by A. F. Watts, D.A. Pidgeon and M.K.B. Richards  
 

This test has also been published by the N.F.E.R. and it deals with 3D material. It consists of 

five sub-tests, preceded by a practice test. The sub-tests are: matchbox corners, shapes and 

models, square completion, paper folding and block building. The maximum given time for its 

completion is cca 45 minutes (Lean & Clements, 1981).  

 

3.7 Gestalt Completion Test by R.F. Street  
 

It was published in 1931 by Teachers’ College, Columbia University, New York, USA. It consists 

of 12 items, each of which is a black and white picture on which certain parts have been 

https://www.researchgate.net/figure/268982370_fig1_Figure-1-Mental-Cutting-Test-MCT-example-problem-CEEB-1939
https://www.researchgate.net/figure/268982370_fig1_Figure-1-Mental-Cutting-Test-MCT-example-problem-CEEB-1939
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deleted. Incomplete pictures are then presented like a slide-film projected on a screen and it 

is required of subjects to complete the pictures mentally but also to describe in writing what 

they thought the pictures represented. First two items shown are practice examples. The time 

each item was exposed was about 10 seconds and the maximum time given for the test to be 

completed was cca 5 minutes (Lean & Clements, 1981).  

 

3.8 3D Drawing Test by M.C. Mitchelmore 
 

It was published in 1974 and consists of four separate tasks. It is required of subjects to draw 

parallel lines in space in order to represent 3D objects two-dimensionally. In the first exercise 

a diagram of a winding road is given with two light poles in the front and it is required of 

subjects to draw more poles alongside of the road, which task takes about 3 minutes. In the 

second exercise a half full bottle is shown and also how to represent the liquid inside. It is 

then required of the subjects to draw liquid surfaces on the example of bottles in various 

orientations. This task takes about 2 minutes. The third task consists of a cuboid made of 

many small wooden cubes, along with a diagram showing the cuboid. The subjects then need 

to complete drawings of other four blocks with no models shown to make them appear as 

though they have been constructed of small cubes. Seven minutes was allowed for this 

exercise. In the fourth and final exercise, a transparent plastic cube is shown along with a 

diagram representing the cube, using the dotted lines to portray the ‘invisible lines’. It is then 

required of the subjects to complete diagrams of four prisms with no models shown, by 

adding the dotted lines. The time allowed for this exercise is 6 minutes (Lean & Clements, 

1981).  

 

3.9 Spatial ability Test (SAT) by Ekstrom et al (1976) 
 

The SAT consists of two tests: Spatial Orientation Ability Test (SOAT) (Kayhan, 2005), which in 

turn consists of two subtests, Card Rotation Test (CRT) and Cube Comparison Test (CCT). CRT 

measures the ability to distinguish between the shapes and true-false items and consists of 

169 items. CCT measures the ability of mental rotation and consists of tasks featuring six 

cubes, the sides of which are labelled with different numbers or letters. It is required of the 

subjects to decide whether the presented cubes are same or not. The CCT consists of 42 items. 
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Total score on the SOAT are the added scores on the CRT and CCT. Second test is Spatial 

Visualisation Test (SVAT) (Kayhan, 2005), which also consists of two sub-tests: Paper Folding 

Test (PFT) and Surface Development Test (SDT). The PFT consists of multiple choice items 

which require mental folding and unfolding a piece of paper, with 60 items present in the test. 

The SDT test requires visualising the development of different objects by folding paper and 

consists of 60 items (Turgut & Yilmaz, 2012).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

4 Spatial abilities and STEM 
 

“There is good evidence that [spatial ability] relates to specialized achievements in fields 

such as architecture, dentistry, engineering, and medicine . . . . Given this plus the 

longstanding anecdotal evidence on the role of visualization in scientific discovery . . . it is 

incredible that there has been so little programmatic research on admissions testing in this 

domain.” (Richard E. Snow, 1999, p. 136) 

 

Researchers worldwide have shown correlation between success in STEM and well-developed 

spatial abilities and as such, high scores on spatial abilities tests act as predictors for success 

in the field of STEM. However, as it has been noted before, spatial abilities as such are not 

directly trained or taught and for the most part it is relied on having them naturally developed, 

despite of plenty of evidence for the educational-occupational significance of spatial ability 

(Gohm, Humphreys, & Yao, 1998; Humphreys, Lubinski, & Yao, 1993; Lohman, 1988, 1994a, 

1994b; Smith, 1964) 

 

In a paper written in 1957, Super and Bachrach characterised spatial ability as an individual 

differences attribute with special importance for learning advanced scientific-technical 

material required for success in STEM. Apart from this, the authors also emphasised that 

attributes beyond spatial abilities, such as mathematical abilities, interests and non-

intellectual attributes such as persistence, need as well to be studied. They were of the 

opinion that there was a great need for longitudinal studies which would follow development 

from early age and extending over 10 or 15 years (Super & Bachrach, 1957, p. 87).  

 

Smith (1964) argues that there are at least 84 different careers in which spatial skills are 

important (Smith, 1964), whereas Maier argues that for technical professions such as 

engineering spatial visualisation skills and mental rotation skills are especially important 

(Maier, 1994).  

 

Spatial abilities are considered to be closely related to success in mathematics and geometry 

specifically (Holzinger & Swineford, 1946). With regard to the field of mathematics 

specifically, it has been shown by Friedman (1995) in meta-analysis which included 75 studies 
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that correlations between spatial and mathematical abilities ranged between 0.3 and 0.45 

(Friedman, 1995). Guay and McDaniel showed that among elementary school children, those 

with high mathematics scores have greater spatial abilities unlike their peers with low 

mathematics scores (Guay & McDaniel, 1977, p. 214). Apart from this study, many other 

researchers reported positive relation of high spatial abilities to mathematics achievement 

(Battista, 1990; Fennema & Sherman, 1977; Kayhan, 2005; Turgut, 2007) but also to physics 

and science in general (Delialioğlu 1996; Delialioğlu & Aşkar, 1999). Furthermore, Hegarty and 

Waller supported the view that spatial abilities are important for constructing and 

understanding abstract spatial configurations in mathematical problem solving and 

emphasised that mathematical thinking required abilities associated with visual perception 

and spatial ability (Hegarty & Waller, 2005), whereas researchers emphasise the importance 

of spatial abilities for the sheer process of development of mathematical thinking (Gutiérrez, 

1996; Presmeg, 2006). 

 

4.1 Moses research and ‘degree of visuality’ 

 

A pioneering research conducted by Moses in 1977 involved 145 fifth-grade elementary 

school students from the US, who were given a battery of six tests. Five of these tests were 

spatial abilities tests: Punched Holes, Card Rotations, Form Boards, Figure Rotations and Cube 

Comparisons. Sixth test comprised of a problem-solving inventory, i.e. ten non-routine 

mathematical problems. At the end of testing a threefold score was calculated: spatial ability 

score based on the z-scores from the five spatial tests, a problem-solving inventory from the 

sixth test and also a ‘degree of visuality’ score based on the number of e.g. pictures, graphs, 

lists or tables which the participants presented in their problem solutions in the problem-

solving inventory. Although the correlations of spatial ability with problem-solving score and 

the ‘degree of visuality’ were significantly different than zero, the correlation between 

problem-solving performance and ‘degree of visuality’ was not significantly different than 

zero and thus the author concluded that spatial ability is a good predictor of problem-solving 

performance. Despite of the fact that subjects with high spatial abilities score high on pencil-

and-paper problem solving exercises, the solutions they offer do not always show the extent 

of visual processes which were involved (Moses, 1977).  

 



21 
 

In 1980 Moses conducted another research, this time examining gender and age differences 

in spatial visualisation, reasoning and mathematical problem solving tasks and how visual 

thinking exercises affected the differences. She divided the subjects, who were middle-class 

students in fifth grade, ninth grade and university level, into experimental and control groups 

and gave both groups seven pencil-and-paper tests as pre-test and post-test. Four of the tests 

administered were tests of spatial abilities: Mental Rotation, Punched Holes, Form Board and 

Hidden Figures. Two were reasoning tests: Nonsense Syllogisms and Reasoning, whereas the 

third was a problem-solving test comprising of ten non-routine mathematical problems. 

Correlations between scores on the problem-solving inventory and spatial abilities tests, 

reasoning and the ‘degree of visuality’ were all significantly different than zero. The author’s 

conclusion was that instruction in visual thinking affected spatial and reasoning abilities, but 

this did not involve problem-solving achievement or the ‘degree of visuality’ (Moses, 1980).  

 

Criticism of Moses’ studies extend to her ‘degree of visuality’ construct, i.e. the method she 

used to obtain the scores on it but also to the items contained in the problem-solving 

inventory. Moses measured individual ‘degree of visuality’ by analysing the students’ written 

solutions to the problems given, noting the number of occasions on which the participant 

made a graph, list or diagram, all of which she considered to be displays of spatial skills. In 

some of the problems it was required of the participant to draw a graph and such occasions 

could not have been treated as spontaneous ‘display of spatial skills’. Also, there is a 

possibility that certain participants did not put the visual imagery on paper. The second point 

in criticism of her work is that the problem-solving inventories were of high difficulty. Mean 

scores in her second study were 1.22 out of maximum 10 for fifth-grade, 2.25 out of 10 for 

ninth and 3.33 out of 10 for university level (Lean & Clements, 1981).  

 

4.2 SMPY  (Study of Mathematically Precocious Youth) 

 

One of the projects highly relevant for this topic is certainly SMPY (Study of Mathematically 

Precocious Youth). It is a longitudinal study designed to discover best methods for identifying 

and nurturing talent for STEM as Super and Bachrach suggested in their work (1957). Shea, 

Lubinski and Benbow (2001) followed 563 talent search participants who were identified in 

1970ies via SAT (Scholastic Assessment Test) until the age of 13 as intellectually talented, 
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among 0.5% within their peers of the same age. Among other things they were also assessed 

on spatial abilities. Biographical, educational and occupational criteria were collected 5, 10 

and 20 years after identification. Those young adolescents who displayed higher levels of 

spatial ability at the age of 13 and who subsequently found math and science to be their 

favourite subject in high school, earned graduate and undergraduate degrees in STEM and 

made careers in this field as well. What is more, function analyses conducted at the three 

time points showed that spatial ability added incremental validity beyond the SAT-

Mathematical and SAT-Verbal in predicting math-science criteria. Webb, Lubinski and 

Benbow (2007) used a less selective sample of 1060 adolescents who were identified in 

1990ies, who were among the top 3% in ability, and showed that spatial ability has 

incremental validity over both SAT scales and various educational-occupational preference 

questionnaires over a five-year interval for predicting favourite high school courses, leisure 

activities which are relevant to STEM, focus of study at the university and in the end, the 

choice of occupation. The period spanned again from the initial identification at the age of 13 

and monitoring continued until after high school. On the whole, spatial ability accounted for 

additional 3% of the variance in prediction of these criteria beyond the SAT and educational-

occupational questionnaires. Apart from the adolescents whose outcomes ended up in the 

human sciences and other fields, those with STEM outcomes showed higher levels of spatial 

abilities at the age of 13 (Wai, Lubinski & Benbow, 2009).  

 

Lohman, however, pointed one shortcoming of this research and the conclusions drawn from 

it. The authors did not use random samples of general population or even random samples of 

students with higher abilities. All participants were highly talented individuals, motivated to 

attend complex academic programmes for talented youth (Wai, Lubinski & Benbow, 2009).  

 

4.3 Project TALENT research by Wai, Lubinski and Benbow  

 

Wai, Lubinski and Benbow used data which Project TALENT yielded in order to examine the 

extent to which the spatial abilities assessed in adolescence is a significant characteristic 

among those participants who decide on pursuing careers in the field of STEM. Project 

TALENT’s initial data collection in 1960 consisted of a random sample of high school pupils in 

the US. Pupils through 9th to 12th grade were assessed on a variety of tests and questionnaires 
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during a one-week period. The entire sample consisted of 50 000 males and 50 000 females 

per grade, with a total of cca. 400 000. In the tests were included many measures designed 

to assess cognitive abilities (such as mathematical, verbal and spatial ability), general 

information tests (about content areas including art, biology, engineering, journalism and 

physics), measures of attitudes, interests and personality traits, as well as additional 

questionnaires consisting of questions relating to their lives (family, hobbies, school, health 

etc.). The Project also includes longitudinal data taken one, 5 and 11 years after graduation 

from high school (Wise et al., 1979) Wai, Lubinski and Benbow then examined the data and 

focused on those participants who reported being awarded academic titles and their choice 

of occupation (Wai, Lubinski & Benbow, 2009).  

 

The authors used simplified form of the hierarchical model of cognitive abilities outlined by 

Carroll (1993), the radix scaling of cognitive abilities (Snow, Corno & Jackson, 1996; Snow & 

Lohman, 1989). This model groups cognitive abilities around three areas: mathematical, 

spatial and verbal, whereas G is a construct of general intelligence (Wai, Lubinski & Benbow, 

2009).  

 

 
 
 

 

 

 

 

 

 

 

 

 
Figure 4. The radex of cognitive abilities (Snow & Lohman, 1989; Snow, Corno & Jackson, 1996). 

The authors further formed three ability composites in order to measure the components 

found in the radix (Snow & Lohman, 1989; Wise et al., 1979). Mathematics composite 

consisted of four tests: 
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1. Mathematics information – consisting of 23 items examining knowledge of math 

definitions and notation 

2. Arithmetic reasoning – consisting of 16 items examining reasoning ability needed to 

solve basic arithmetic problems 

3. Introductory mathematics – consisting of 24 items examining math knowledge 

taught through the 9th grade 

4. Advanced Mathematics – consisting of 14 items examining knowledge in algebra, 

plane and solid geometry, probability, logic, logarithms and basic calculus 

 

Verbal composite consisted of following tests: 

 

1. Vocabulary – consisting of 30 items measuring general vocabulary knowledge 

2. English composite – consisting of 113 items measuring knowledge of English 

grammar, capitalisation, punctuation etc. 

3. Reading composite – consisting of 48 items measuring understanding of given text  

 

And finally, the spatial composite consisted of four tests: 

 

1. 3D spatial visualisation – consisting of 16 items measuring the ability to visualise 2D 

figures after they have been folded into 3D objects. Each problem in this test 

consists of a piece drawn unfolded on the left side and five possible configurations of 

how the unfolded piece would look like when folded. It is required of the subjects to 

choose the correct configuration. 

2. 2D spatial visualisation – consisting of 24 items measuring the ability to visualise 2D 

figures after being rotated otherwise undergone a transformation on a plane. Each 

problem in this test consists of a configuration on the left side and then five possible 

outcomes of the original configuration’s rotation.  

3. Mechanical reasoning – consisting of 20 items measuring the ability to understand 

relationships between gears, pulleys and springs, as well as knowledge to 

understand effects of basic physical forces. In this test problems consist of diagrams 

and pictures showing pulley, gear and spring configurations in which it is e.g. 

required of subjects to conclude in which direction a specific gear will be turning.  
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4. Abstract reasoning – consisting of 15 items as a nonverbal measurement of finding 

logical relationships in complex figure patterns. Each problem in this test consists of 

a set of figures which all share a common pattern. The subjects need to understand 

the pattern and then draw the figure which is missing (Newcombe, 2010).  

 

The authors’ hypotheses were:  

1. Pattern discovered during SMPY on the three specific abilities will be mirrored by 

those in Project TALENT when compared against pertinent educational and 

occupational criterion groups.  

2. Significance of spatial ability will increase as a function of more demanding STEM 

criteria (e.g. academic degree) 

3. Conclusions from the Graduate Record Exam will mirror those of Project TALENT and 

SMPY.  

4. Significant percent of adolescents with talent for STEM or other fields for which 

spatial abilities are required is not visible by the current selection procedures for the 

choice of career in STEM.  

 

Results showed that 45% of those holding STEM PhDs, 30% of those holding STEM master’s 

degrees and 25% of those holding STEM bachelor’s degrees were within the top 4% on spatial 

abilities eleven years earlier. The authors concluded that the importance of spatial ability for 

STEM fields increases along with the academic degree the subjects were awarded later. It is 

interesting to note, with regard to the question of whether spatially gifted students were 

missed by current talent-searching mechanisms which focus only on mathematical and verbal 

talent, that 70% of the top 1% in spatial ability did not make it into the top 1% on either 

mathematics or verbal composite and yet these individuals are highly gifted in spatial ability 

and yet they earned STEM and visual arts degrees (Wai, Lubinski & Benbow, 2009).  

 

4.4 Sorby et al research on spatial skills as predictors of success in first-

year engineering 

 

S. Sorby, E. Nevin, A. Behan, E. Mageean and S. Sheridan conducted a research on the spatial 

skills as predictors of success in first-year engineering during the first semester in 2013 at the 
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Dublin Institute for Technology among students studying civil engineering, mechanical 

engineering and common engineering, which results were then compared with those of 

students of architecture, architectural technology and computer science. The authors 

administered the PSVT:R and MCT tests during regular class times and in some cases both 

tests were administered on the same day, although in most of the cases the students solved 

only one of the two tests. At the end of the semester, students’ grades in their regular courses 

were collected on a numerical scale of 0 to 100. It should also be noted that in Ireland a 

minimum of 40% score is required for a passing grade in the course (Sorby et al, 2014).  

 

Students in Ireland take an exam in their final secondary school year which is called Leaving 

Certificate (LC). Points are collected from a student’s six best subjects with a maximum of 600 

points (a maximum of 100 for each subject). Higher education in Ireland also distinguishes, 

among other levels, Level 7 which is called Ordinary Bachelor’s Degree and Level 8, the 

Honours Bachelor’s Degree. For entry e.g. on the Level 8 engineering programme it is required 

of students to have been awarded a minimum grade of C (55%) in the higher level secondary 

school mathematics exam, whereas to enrol into the Level 7 engineering programme a 

minimum grade D is required (40%) on the lower level mathematics exam. In other words, it 

is logical from these requirements that students on Level 8 will have a higher mathematical 

pre-knowledge than those on Level 7 (Sorby et al, 2014).  

 

There were more than 800 students who completed one or both of the tests, whereas for 

those who completed both correlation between the two tests was calculated (r =0 .634, p < 

0.001), which findings indicate that an individual score on one test is a good predictor of the 

score on the other test. The authors focused on gender differences on the tests but also on 

the differences between students studying different disciplines. The average for the PSVT:D 

was 20.46 out of maximum 30 (68.2%) and 11.5 out of possible 25 (46.2%)  for the MCT. The 

results obtained indicate that the students found the MCT test more difficult than the PSVT:R. 

With regard to the gender differences, on the PSVT:R men averagely scored 20.51 and women 

16.54 out of maximum 30, whereas on the MCT men averagely scored 10.24 and women 8.53 

out of maximum 25. The authors compared average scores with regard to disciplines and also 

with similar programmes, comparing them against each other but also against results 
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obtained using the PSVT:R and MCT at other institutions, such as in the US, Poland and 

Germany (Sorby et al, 2014).  

 

When compared against other results, spatial skills of the Irish students are behind those of 

students in the US and other European countries. One possible explanation the authors 

offered was the age – while Irish students are typically 17-19 years old when they enrol a 

university, the students in the US and Poland are 18-19 and in Germany 19-20. Second 

possible explanation was that in Ireland a greater percentage of secondary school pupils 

continue with university education, and so it would be logical that the scores of the Irish 

students on the spatial tests when compared against the small percentage of the elite which 

enrols at universities in for instance Germany. With regard to the students of computer 

science, their scores on PSVT:R are among the highest and their scores on MCT are among 

the lowest. The authors offer the explanation that computer science students often play 

computer games, which have been shown to enhance spatial skills (Green & Bavelier, 2003, 

p.534.) and given that they involve rotating objects or people in space but do not involve 

determining cross-sections of objects. Low scores of Architecture students the authors 

explain by the relatively large percentage of women in that programme (30%) when 

compared against percentage of female students in other programmes (less than 10%). 

Generally spatial skills of students studying in the ordinary programmes are lower than those 

in the honours programmes, which is expected since it has been shown that there is a 

connection between spatial skills and mathematical abilities (Fennema & Sherman, 1977) and 

of course, students in the honours programmes have higher mathematics entrance scores 

(Sorby et al, 2014).  

 

From the results obtained after analysing the students’ scores in their regular courses the 

authors concluded that LC Points are a good predictor of success in higher level mathematics 

in the honours programme (p < 0.0001) but not for those in the ordinary programmes. One 

explanation offered by the authors is that the classes at the university are very similar to the 

classes in high schools and thus result in similar patterns for these groups. No significant 

correlations have been found between performance on the MCT and at the introductory 

mathematics course. The authors also wanted to examine whether low spatial skills reflect in 

low performance on the mathematics course. To this end they fixed the score of 11 out of 
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maximum 25 on the MCT test as threshold score between weak and good spatial abilities, 

which idea stems from the data gathered from previous studies in the US where variable 

categorisation was required into weak, average and high, based on their score on the MCT 

(Hamlin, Boersma & Sorby, 2006). The variable of success on the mathematics course was 

categorised as receiving a passing grade or more (≥40%), with failure categorised as failing 

the course or not completing it at all (<40%) (Sorby et al, 2014).  

 

For the honours students the LC points seem to predict success on the mathematics 

introductory course and not spatial abilities, as significant correlations suggest. Weak 

visualisers had success rate of 60.5%, average score on the mathematics course 49.4% with 

average LC score of 395.8 (p < 0.05), whereas good visualisers had success rate of 60.5%, 

average score on the mathematics course 46.8% with average LC score of 420.5. However for 

the students in the ordinary mechanical engineering problem the results suggest the opposite 

situation. Weak visualisers had success rate of 65.5%, average score on the mathematics 

course 49.9% with average LC score of 330.2, whereas good visualisers had success rate of 

93.3%, average score on the mathematics course 62.9% with average LC score of 347.5. Those 

students who did not succeed on the mathematical course were also in the weak visualisers 

group. However, for the students in Level 7 Civil Engineering course both LC points as well as 

spatial skills could be predictors of success on the mathematics course. In the weak visualisers 

group success rate was 52.2% (p<0.1), average score on the mathematics exam 38.36% 

(p<0.05) and average LC score of 280.3 (p<0.05), whereas in the good visualisers group 

success rate was 60.5%, average math score 63.33% and average LC score 365.0. However, 

given that only three students were from the good visualisers group the authors could not 

offer any conclusions (Sorby et al, 2014).  

 

The authors have concluded that students with better mathematics pre-knowledge are also 

more successful in their introductory mathematics course and as such, it can be concluded 

that high prior performance is an indication of success in mathematics course at university 

level. For students with low pre-knowledge in mathematics no correlation has been between 

prior knowledge and performance. It has been found in previous studies in the US that spatial 

skills act as predictors for grades and persistence in engineering programmes. However this 
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was one of the factors which was not examined in the previously covered research (Sorby et 

al, 2014).  

 

4.5 Development of a course to improve spatial abilities of engineering 

students by Martín‐Dorta, Saorín and Contero 

 

The developed course was offered to the students alongside of other remedial courses 

offered to first-year students in order to improve their knowledge in basic subjects and 

participation in such courses is voluntary. Participants consisted of 40 students (25 males and 

15 females) in civil engineering programme at the University of La Laguna, Spain. Most 

students were 18-20 years old. The authors used freeware version of Google SketchUp 5, 

which allows users to build and modify 3D models quickly and easily. Apart from this software, 

the authors used a set of 24 objects made of aluminium and of approximate dimensions 

60x55x45mm, which the students used for orthographic view definitions, whereas they used 

cuts and sections for geometrical definitions (Martín‐Dorta, Saorín, & Contero, 2008). 

Working schedule is outlined in the following table: 

 

Level  Week Description  

Level 1: Initiation 1  Building 3D models based on the appearance of the 
aluminium objects  

 Creating a daily object 

Level 2: Improvement 2  Creating 3D models corresponding to parts given by 
their axonometric projection 

Level 3: From 
orthographic views to 3D 
models 

3  Constructing 3D models of parts which are 
represented by their orthographic views 

 Group work 
Table 2. Martín‐Dorta, Saorín and Contero remedial course working schedule, (Martín‐Dorta, Saorín, & Contero, 2008) 

In the first part of the course, the students were getting familiar with Google SketchUp 5. 

After they acquired basic skills for work in the software, they were required to choose one of 

the aluminium objects and to create a corresponding 3D model of it. They were 

recommended to first sketch the object on paper and then sketch it in software. As homework 

they were given the task of creating a daily object, measuring it and then sketching it in 

SketchUp 5. In the second part of the course it was required of students to create 3D models 

corresponding to the parts given by their axonometric projection (Pérez and Serrano, 1998). 

The authors then assessed students’ ability to interpret the 3D model from a 2D perspective. 

This phase of work did not include any instructions on orthographic views. In the third part of 
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the course it was required of the students to construct a 3D model of parts represented by 

their orthographic views. They were given one-hour instructions on orthographic views and 

afterwards discussed proposed group exercises. The authors state that the students found 

this phase of work the most complex, since they had to visualise and construct and mental 

image of the object based only on its orthographic projection. The authors proposed 

formation of working groups, not only to solve the problem given to them but also to promote 

a climate of group work and cooperation (Martín‐Dorta, Saorín, & Contero, 2008).  

 

The authors administered the MRT and DAT:SR tests before and after the course, calculating 

also the difference between the results. Gain differences on the MRT test was 5.48, whereas 

on the DAT:SR was 8.30. Differences in improvement on the MRT for men was 5.96 whereas 

for women was 4.67, whereas differences in improvement on DAT:SR for men was 8.16 and 

for women 8.53. The authors further concluded from the obtained results that the course 

employing Google SketchUp had a measurable and positive impact on the spatial abilities of 

the participants, with improvement on the MRT averagely 5 points and on the DAT:SR 8 

points, regardless of gender (applying t-test for independent series p= 0.552 and p= 0.868, 

respectively) (Martín‐Dorta, Saorín, & Contero, 2008).  

 

With regard to previous similar research, the authors held three remedial courses for students 

with problems with spatial abilities during the academic year 2004/5. First course was based 

on the paper-and-pencil exercises, second one employed a web-based application featuring 

exercises for spatial abilities development whereas the third one employed a sketch-based 

modelling application e-CIGRO, developed by the REGEO Research Group (Regeo Research 

Group, 2008). The subjects were students who scored among the lowest 20% on pre-test. In 

order to be able to compare results with the pervious researches which have just been 

outlined, the authors narrowed down the sample on just the percentage of students who 

scored among the lowest 20%. ANOVA analysis was performed and with regard to the MRT 

test, the effect of the type of course was not significant (F3,60 =0.83 and p-value =0.483), 

whereas with regard to the DAT:SR the course type was significant (F3,60= 4.35 and p-value= 

0.008). Furthermore, Tukey test indicated that the mean improvement in group 2 (working 

with the web-based application) was significantly lower when compared to the group 1 (paper 
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and pencil) and group 4 (Google SketchUp). Group 3 (sketch-based modelling) showed no 

differences (Martín‐Dorta, Saorín, & Contero, 2008).  

 

4.6 Measuring spatial ability of students of mathematics education in 

Croatia by Šipuš and Čižmešija 

 

The aim of the authors was to analyse spatial skills of future mathematics teachers studying 

at the Department for Mathematics, University of Zagreb, Croatia using the MCT. The testing 

was performed at the beginning and at the end of the 1st semester in academic year 2009/10. 

The sample consisted of 98 students (29 male and 69 female) in their first year of Bachelor 

Mathematics Education Programme (ME1) and 32 second year students (6 male and 26 

female) in Master Mathematics Education programme (ME5). In order to avoid the effect of 

learning the test, the authors rearranged the items in the test. It was also one of the authors’ 

aims to compare the results obtained from ME1 and ME5 students with those studying at 

different STEM universities (Šipuš & Čižmešija, 2012). The sample consisted of: 

 

 116 students (50 male and 66 female) studying at the Faculty of Civil Engineering 

(Eng1), 

 102 at the Faculty of Architecture (Eng2), 

 204 at the Faculty of Geodesy (Eng3), 

 192 Faculty of Mining, Geology and Petroleum Engineering (Eng4).  

 

 The authors reported the following average results per different groups: ME1 scored 

averagely 9.97, ME2 14.66, Eng1 15.83, Eng2 13.06, Eng3 11.87 and Eng4 8.71 out of 

maximum 25 points. That authors observed that ME5, Eng1, Eng2 and Eng3 students achieved 

better results than ME1 and Eng4 students, what they confirmed employing a t-test which 

showed statistically significant differences between the results of Me1 and Me5 students 

(p=0.01). They also showed statistically significant differences between the results of ME1 

and Eng1, as well as Eng2 and Eng3 students (p=0.01). One possible explanation the authors 

offered for the differences in spatial abilities of ME1 and ME5 students is that ME5 students 

are less in number and also that they had opportunities to improve their spatial abilities 

through various courses they covered while studying. Lastly gender overall differences in 
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performance on the MCT test were examined. Average scores for men was 12.3 and 9.10 for 

women in the ME1 group, 19.00 for men and 13.65 for women in the ME5 group and 17.08 

for men and 14.8 for women in the Eng1 group. It has been shown that male students perform 

statistically significantly better than female students (p=0.01). The authors emphasise that 

female students studying Mathematics Education outnumber male students, with 70% 

women in ME1 and 81% of women in ME5. Comparison of ME1 and Me5 female students’ 

performance on the MCT with the Eng1 female students’ performance shows that women in 

the Eng1 group scored statistically significantly better (p=0.01) (Šipuš & Čižmešija, 2012).  

  

4.7 Research on the correlation between primary mathematics teachers’ 

gender, academic success and spatial ability by Turgut and Yilmaz 

 

The authors conducted a correlational study which had for its aim to determine relationships 

among future primary school mathematics teachers’ gender, academic success and spatial 

abilities. The sample consisted of 193 subjects (111 female and 82 male). Instruments used 

for measurement was the spatial ability test developed by Ekstrom et al (1976) consisting of 

the Spatial Orientation Ability Test (SOAT), which consists of two subtests, Card Rotation Test 

(CRT) and Cube Comparison Test (CCT), and Spatial Visualisation Test (SVAT), also consisting 

of two sub-tests, namely Paper Folding Test (PFT) and Surface Development Test (SDT) . Total 

average scores on the SOAT amounted to 176.80 out of maximum 202 and on the SVAT 38.92 

out of maximum 80. Total average score on both tests for all participants was 213.48 out of 

maximum 282. With regard to gender, the performance on the SOAT was in favour of women, 

who averagely scored 175.52, whereas men averagely scored 174.09. The performance on 

the SVAT was once again in favour of women, who averagely scored 39.50, whereas men 

averagely scored 38.35 (Turgut & Yilmaz, 2012).  

 

In order to examine the correlation between academic success of future primary school math 

teachers and spatial ability the researchers used Pearson Product Moment Correlation 

Coefficient. Statistically significant correlation has been found (r=0.36, p< 0.01). From the 

results the researchers also concluded that there was also a statistically significant correlation 

between spatial orientation ability and academic success (r=0.29, p<0.01), as well as between 

spatial visualisation ability and academic success (r=0.32, p< 0.01). With regard to the 
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difference between gender and spatial ability, the distribution of the spatial ability scores 

needed to be examined, for what the researchers used the Kolmogorov-Smirnov normality 

test. It has been concluded that distribution of the scores with regard to gender does not have 

characterisation of normality (p<0.05). Further application of the non-parametric Mann-

Whitney U test indicated that there is no statistically significant difference between the scores 

on spatial ability and gender (U=4297.5, p> 0.05). Researchers lastly used Pearson Product 

Moment Correlation coefficient to determine the relationship between spatial orientation 

and spatial visualisation abilities and it has been observed that spatial orientation and spatial 

visualisation of future primary school mathematics teachers are positively correlated (r=0.42; 

p<0.01) (Turgut & Yilmaz, 2012).  

 

4.8 Pre-graphics course by Sorby and Baartmans 

Sorby and Baartmans (2000) developed a pre-graphics course in 1993 on the Michigan 

Technological University which had for its aim to improve spatial skills of freshmen. Tools used 

for assessment of the development of these skills were the Purdue Spatial Visualisation Test: 

Rotations, The Mental Rotation Test, The Mental Cutting Test and The Differential Aptitude 

Test: Space Relations. The Purdue Spatial Visualisation Test tests a person's ability at the 

second stage of spatial development, the Mental Rotation Test assesses a person’s ability to 

visualise rotated solids, in the Mental Cutting Test the participants are asked to choose the 

correct cross-section which results from cutting a criterion figure with an assumed plane, 

whereas The Differential Aptitude Test requires of a participant to choose the correct 3-

dimensional object from four alternatives which would result from folding the given 2-

dimensional pattern (Sorby & Baartmans, 2000).  

The goal of the authors was among other things to help female colleagues studying at MTU 

to enhance their 3D visualisation skills. In 1985 Baartmans conducted a research study at the 

MTU. The sample consisted of 365 first year students (65 women and 300 men) who took 

Mechanical Engineering as the focus of their studies. Before the beginning of the course 

pretest in the shape of PSVT:R has been distributed to the subjects. Multiple regression 

analysis has shown that the most significant predictor of success in the freshman graphics 

course was the students’ score on this test. Two other factors which were found to be 
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significant in predicting students’ success were mathematics subtest score and a combination 

of prior experience in shop, drafting and solid geometry. Scores on the spatial visualisation 

test were 20.9 for women and 24.2 out of 30 for men. Their scores significantly improved 

after the course, but women still remained behind men in their achievements on the test: 

23.3 for women and 25.6 for men (Sorby & Baartmans, 2000).  

In 1993 the authors wrote a textbook to be used in their new introductory 3D spatial 

visualisation skills course called GN102, Introduction to Spatial Visualization, consisting of 

following topics:  

 

Week 1 – course 

introduction 

Students were introduced to the need for visualisation skills in fields 

of engineering, medicine, architecture, chemistry and mathematics.  

Week 2 – isometric and 

orthographic sketching  

Students were given a set of cubes and were told to construct a 

building according to coded plans. They learned how to make 

isometric and orthographic drawings of the building using grid 

paper.  

Week 3 – orthographic 

drawings and applications 

Objects which contained inclined surfaces have been demonstrated 

and orthographic and isometric sketches of these objects have been 

made of these objects.  

Week 4 – pattern 

development  

Flat patterns which are to be folded into 3D solids are studied.  

Week 5 – Two and three 

coordinate drawing 

Students were shown how to locate specific points in space and 

they used a table of coordinate data in order to draw wire-frame 

models. Surveying application using traverse data was introduced.  

Week 6 – Translation and 

scaling  

Transformations in 3D space were introduced and students were 

required to draw objects after translation and scaling.  

Week 7 – Object rotation Students were required to work with objects made  of snap cubes 

and sketch isometric views of the objects after rotated about one 

or the more axes.  

Week 8 – reflection of 

objects and applications  

In order to construct reflected images of objects students used 

Miras in class.  

Week 9 – Cross-sections of 

solids  

Students are taught how to graphs planes in 3D space and they 

examined cross-sections for cubes, cones and cylinders of different 

orientations. 

Week 10 – surfaces and 

solids of revolution and the 

intersection of solids 

Students were required to sketch the surface or solid created by the 

rotation of a planar figure around an axis. The also sketched the 

shape of the planar figure which was rotated given the surface/solid 

of rotation.  

 
Table 3. Introduction to Spatial Visualization working schedule, Sorby and Baartmans study (Sorby & Baartmans, 2000) 
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In 1993 students who enrolled in mechanical, civil, environmental, geological and general 

engineering were given the PSVT:R and a background questionnaire as part of their freshman 

orientation lecture. Sample consisted of 535 students (418 male and 117 female). Average 

percent of correct answers on the test was 79.6% for males and 68.1% for females. From 

further statistical analyses of the background questionnaire and the PSVT:R eleven factors 

have been studied, four of which have shown to be significant predictors of success on the 

PSVT:R test. Those were: 1) play as children with construction toys, 2) gender, 3) math scores, 

4) previous experience in design-related courses like drafting, mechanical drawing etc. 

Factors which were not significant for the PSVT:R score were: 1) age, 2) right/left handedness, 

3) previous experience in high school geometry courses, 4) participation in industrial arts 

courses in high school, 5) playing video games, 6) previous work experience which involved 

spatial skills, 7) participation in sports which involve placing an object in a specific location 

(e.g. baseball, hockey etc.). Compared to the mean test scores which was 15.5%, on the post-

test the students scored a mean test score of 24.7%. The course has been taught in 

subsequent years to the incoming first year students and different tests for pre- and post-

testing have been administered, such as MRT, MCT and DAT:SR (Sorby & Baartmans, 2000).  

 

4.9 Spatial ability, visual imagery and mathematical performance study by 

Lean and Clements 
 

Lean and Clements conducted a study in 1981 which had for one of its aims to answer the 

question of whether persons who prefer to use visual imagery when dealing with 

mathematical information are likely to perform better on certain mathematical tasks than 

people who prefer verbal-logical mode. Their subjects were 116 first year Engineering 

students of the University of Technology, in Papua New Guinea. Mean age was 19.6 years, 

whereas there were 114 males and 2 females. A battery of five spatial tests was administered 

to the participants during the first two weeks of their course: 1) spatial Test EG by I. 

MacFarlane Smith, 2) Spatial Test II by A.F.Watts, D.A. Pidgeon and M.K.B. Richards, 3) Gestalt 

Completion Test by R.F. Street (1931), 4) Standard Progressive Matrices, Set D, by J.C. Raven 

(1938), 5) 3D Drawing Test by M.C. Mitchelmore (1974).  During a further session in the third 

week they were given a mathematics test and a questionnaire developed by Suwarsono. 

During their course the subjects were additionally given two more mathematics tests: 1) 
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‘pure’ mathematics test consisting of 24 items dealing with routine mathematical knowledge, 

2) ‘applied’ mathematics test consisting of 27 items dealing with understanding of physical 

and mechanical concepts. Suwarsono’s questionnaire, which was developed in 1979 in 

Melbourne, consists of two parts: 1) 30 mathematical word problems, 2) written descriptions 

of different methods normally used by students solving problems in first part, normally 

ranging from three to five possible methods outlined. Students are then asked to try to solve 

problems in part one and then indicate which of the outlined methods in part two they used 

and, if the method they used was not outlined, to give a detailed description of it (Lean & 

Clements, 1981).  

 

Multiple regression analysis suggested that spatial ability did not have a large influence on 

the mathematical performance on tests. Moreover, the results showed that students who 

preferred to process mathematical content using verbal-logical mode outperformed the more 

visual students on both mathematical and spatial tests. This result seems to be in 

contradiction with results of similar studies and the authors offer one possible explanation 

for this – straightforward, routine problems in the ‘pure’ and ‘applied’ mathematics tests, 

whereas in other studies more complex, non-routine problems were used and also to the 

possible developed skill to abstract readily and thus avoid use of visual imagery. As one of the 

faults of the study the authors outline the fact they did not measure many of the non-

mathematical variables such as student motivation, working habits or language competence 

(Lean & Clements, 1981).  

 

4.10 Study in training generalised spatial skills by Wright, Thompson, Ganis, 

Newcombe and Kosslyn 

 
R. Wright, W. L. Thompson, G. Ganis, N. S. Newcombe and S.M. Kosslyn (2008) conducted a 

study which had for its aim to examine whether intensive long-term practice leads to changes 

which go beyond specific tasks and stimuli. The participants were 31 students (14 male, 17 

female), most of them undergraduates with an average age of 23.4 recruited via Harvard 

University Psychology Department website, who voluntarily took part in practice sessions. 

The study consisted of three tasks, whereas problems presented consisted of reference image 

on the left side with comparison image on the right side against black background. For each 
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task the authors included a comparable amount of easy, medium and hard problems (Wright 

et al, 2008).  

1. First task was MRT, a computerised version of the MRT, measuring the ability to 

compare a pair of 3D objects showed in different orientations and where participants 

were required to decide whether they were identical or mirror images, stretching over 

48 basic block configurations which led to 288 unique items. 9 female and 8 male 

participants were trained on this test.  

2. This task consisted of MPFT, a computerised adaption of the task designed by Shepard 

and Feng (1972). However in addition to the original 2D unfolded cubes, the authors 

included a reference 3D cube image with the aim of creating a comparison task 

analogous to the other tasks they used in their study. Whereas originally Shepard and 

Feng created 165 unique items, the authors stretched the number of items to 255, 

across different difficulty levels. Easy level referred to whether a single square had to 

be folded in order to reach solution, two or three squares referred to medium level 

and 4-7 squares to hard level. 8 female and 6 male participants were trained on this 

test.  

3. The last task was based on the one developed by Morrison et al (2004) in which it is 

required of the participants to compare relationships between two words in each pair 

of words presented simultaneously and to decide whether the relationship between 

the words in the left pair is the same as the one between the words on the right side. 

Authors again grouped the individual problems into easy, medium and hard level, 

according to mean RTs for correct solutions, as gathered from previous research. 

However, only a subset of the items was used due to the difficulty categorisation 

(Wright et al, 2008).  

 

The participants first completed 12 trials in order to get familiar with the system, with of 

course different items than those given in the experimental trials. They gave their responses 

by pressing keys labelled ‘same’ and ‘ different’ and it was required of them to do this as 

quickly and as accurately as possible (up to 6 seconds). After completing the initial laboratory 

session the participants were divided into two groups:  those practising MRT and those 

practising MPFT. This phase of research was conducted via internet. The participants were 



38 
 

required to conduct daily sessions lasting about 15-20 minutes throughout 21 days in a row. 

The practice phase consisted of 114 trials. The items presented in sessions were presented 

randomly and thus participants could miss up to three sessions without needing to be cut 

from the study. One day after completing the practice phase, the participants were retested 

again on all three tasks in the laboratory. This procedure was identical to the one of initial 

laboratory session, with the exception that about half of the items presented in this phase 

were encountered once, during the initial laboratory session, whereas half was completely 

new (Wright et al, 2008). 

 

Authors’ findings show that practice symmetrically transferred to spatial tasks. Moreover, it 

has been found that improvement is greater in the non-practiced spatial task than in the VAT. 

Speed with which the participants acquire skills and transfer within tasks could have been 

affected by differences in the frequency and spacing of sessions. In Wright et al research 

transfer effects were observable after 7 hours of practice spanning over three weeks. Terlecki 

et al (2008) found that transfer occurred after 12-14 hours of practice spanning over 14 

weeks. Post-testing showed transfer of practice gains to newly introduced items for the task 

which has been practised, but also transfer to other spatial tasks which have not been 

practised. Moreover, improvement in the spatial task which has not been practised was 

greater than that in the VAT, from what the authors concluded that the observed 

improvement was not because of easier computerised testing (Wright et al, 2008). 

 

4.11 Developing spatial visualisation with 3D modelling by Šafhalter, 

Glodež and Bakračevič Vukman 

 

The research sample consisted of 22 students of the 9th class (age 14-15 years), with 10 male 

and 12 female pupils. 14 pupils have been sorted into the experimental and 8 into the control 

group. In December 2010 a pre-test has been administered to the subjects, which consisted 

of a modified spatial tests battery and a questionnaire. Spatial tests battery consisted of 

PSVT:R, MRT and DAT:SR, whereas the questionnaire measured the pupils’ way of learning, 

thinking and communicating. The modified spatial tests were administered once again in May 

2011 (Šafhalter et al, 2012).  
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Subjects from the experimental group participated in 3D modelling in Google SketchUp. Their 

work consisted of modelling objects based on their isometric and perpendicular projections, 

beginning with simple objects and gradually progressing to more complex objects (Šafhalter 

et al, 2012).  

Comparison between the results on the pre-test and the post-test showed that the 

experimental group achieved 2.65 points more than on the pre-test, whereas the control 

group achieved 1.0 points more. Analysis also showed that there were no statistical 

differences with regard to progress in spatial visualisation of the experimental group when 

compared with that of the control group. Results have also shown that there were no 

statistically significant differences between male and female participants with regard to the 

progress of spatial visualisation. The questionnaire which measured the pupils’ way of 

thinking and learning helped to sort the pupils into groups according their way of thinking. 

Results showed that there were statistically significant differences between pupils who 

employed visual perception style when compared to others (Šafhalter et al, 2012).  

 

4.12 Gender differences with regard to spatial abilities  

 

Although gender differences will not be a topic of research in this work, the sheer volume of 

research focusing on them requires their mentioning. Eals and Silverman write that gender 

differences with regard to spatial abilities are evident in favour of males “universally across 

regions, classes, ethnic groups, ages and virtually every other conceivable demographic 

variable” (Eals & Silverman, 1994, p. 95). Research has shown that superiority of males is 

mostly recognisable in tasks of mental rotation, with less evident differences in orientation 

and no differences in visualisation (Harris, 1978; Linn & Petersen, 1986). Studies also 

emphasise the effect of hormones on spatial abilities, with oestrogen negatively affecting 

spatial abilities whereas testosterone has been found have a non-linear effect on spatial 

abilities (Kimura, 1996; Moffat & Hampson, 1996). Apart from this purely chemical reason for 

gender differences with regard to spatial abilities development, it has been concluded that 

they are a result of biological factors (Bock & Vanderberg, 1968; McGee 1979a) i.e. that the 

level of spatial abilities is hereditary.  
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Environmental theories on the other hand suggest that cultural, social, gender-roles, 

stereotypes and educational factors play a significant role in differences between genders 

with regard to spatial abilities (Mann et al, 1990; Belz & Geary, 1984; Tracy, 1990; Harris, 

1978). Atop of this, researchers representing environmental approach suggest that problem 

solving strategies and skills, mathematical background and even musical background are 

possible roots for spatial abilities development and can explain gender differences (Clements 

& Battista, 1992; Mislevy et al, 1990; Michaelides, 2002; Wheatley et al, 1994; Heitland, 2000; 

Robichaux & Guarino, 2000). One of the environmental explanations for gender differences 

can also be found in the choice of toys and play in the early childhood. Many stereotypically 

masculine activities such as construction blocks and model building enhance spatial abilities 

development (Caldera et al, 1989; Caplan & Caplan, 1994). Moreover, from infancy 

throughout childhood, boys and girls receive different messages about how suitable a 

particular toy for them is from their parents, caregivers and siblings (Caldera et al., 1989). 

Furthermore, Hoyenga and Hoyenga (1993) suggest socialisation plays an important role in 

the level of development of spatial abilities. The authors found a correlation between the 

level of spatial abilities development and the frequency of playing with toys which encourage 

the development of spatial abilities such as building blocks, mechanical contraptions which 

can be combined and put together. Such toys are more frequently given to boys to play with 

and boys are encouraged to do so, whereas girls who had a lot of experience with play with 

such toys exhibit significantly less inferiority in spatial abilities. Moreover, it has been found 

that among Eskimos no significant gender differences in spatial abilities exist (Neisser et al, 

1996: according to Zarevski, 2000, p.116). 

 

Hoyenga and Hoyenga (1998) conducted a meta-analysis of research of gender differences in 

spatial abilities and found a size effect of 0.43 in the research by Hyde (1981). Differences 

which have been identified were on the higher levels of total cognitive efficacy, where more 

complex factor structures are present. In later meta-analyses size effect has been calculated, 

with the biggest effect of 0.93 found in the mental rotation tasks, average of 0.64 in the tasks 

dealing with field independence (e.g. water level tasks) and 0.13 which has not been found as 

statistically significant in spatial visualisation tests (e.g. paper folding tasks and DAT:SR) 

(Zarevski, 2000; p.115).  
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In 1989 Jerončić, Eterović and Zarevski (1989) conducted a research on differences in spatial 

and verbal abilities as well as perceptive restructuring with regard to the gender function and 

gender roles among fourth-grade secondary school pupils. Whereas for verbal abilities no 

statistically significant differences have been found, for other two abilities the authors found 

differences in favour of male participants. Only for spatial abilities differences have been 

found also with regard to gender roles – masculine participants without regard to their 

biological gender score highest. This research is in line with the broad meta-analysis by 

Signorella and Jaminos (1986) (Zarevski, 2000; p.117).  

 

Although the reasons for gender differences with regard to spatial abilities are far from 

conclusive, it is evident that the differences have an impact on science and mathematics 

education. Some studies have shown that gender differences become evidently smaller with 

additional training or in the end eliminated them completely (Feng et al, 2007). For instance, 

Terlecki et al (2008) showed that females who initially scored poorly on spatial abilities tests 

improved slowly during the course of the experimental programme, but with time improved 

more. On the other hand males and females who scored initially high showed early 

improvement in the course of the training. The authors argue that the learning curve is 

important because if learning period is not sufficiently long it will appear that females benefit 

less from the training and show less improvement than the male participants (Terlecki, 2008).  
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5 Software and spatial abilities 
 

It has been shown by research that spatial skills training using methods such as pencil-and-

paper and work with physical objects is highly valuable, however the software development 

boom, especially freeware software, has brought a myriad of possibilities. It means that 

software which can be used for spatial skills training is not only accessible to schools or those 

who pay for it, but can be accessed and used by anyone who owns a computer and has access 

to the internet. It is beyond the scope of this work to list all of the known software, freeware 

or otherwise, which has been used or has the potential to be used as a spatial abilities training 

tool, however it is hoped that it will provide an adequate image of the topic.  

Let us shortly turn to the criticism of dynamic mathematical software use. Researchers argue 

that the use of this software cannot replace the rigorous analytical thought processes in 

mathematics. While it can help develop some abilities and help subjects to solve a 

mathematical problem by providing a clearer picture of it, Sinclair (2003) reports that 

students involved in her study involving “pre-constructed, web-based, dynamic geometry 

sketches in activities related to proof at the secondary school level” showed "diagram bias", 

i.e. they were too accustomed to being presented with diagrams which reflected the problem 

and which were not entirely accurate in the sense that were not drawn to scale, which is why 

they mistrusted the accuracy of the Cabri or Sketchpad diagrams in their dynamic geometry 

programs (Sinclair, 2003). One further point which needs to be addressed is that the fact that 

students learned how to use the software and have mastered it does not imply they have 

mastered the underlying mathematical concepts. As a side note it is interesting to observe 

that the use of mathematical software can change students' attitude toward mathematics 

altogether (Reed, Drijvers & Kirschner, 2010).  

 

5.1 MathPad© by LaViola and Zeleznik 
 

The authors pointed out that in explanation of mathematical concepts and solving of 

mathematical problems ‘static’ methods such as drawing diagrams and illustrations normally 

only help in the initial problem examination, but that are not very helpful when it comes to 

analysis, which is especially evident in problems which entail complex spatial relationships or 

even in simple problems entailing natural mappings. When such sketches are animated it 
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comes to a discrepancy between what they see and their ideas about motion, which leads to 

guesses. The authors designed MathPad, a prototype application for mathematical sketches 

(LaViola & Zeleznik, 2007).  

 

MathPad incorporates a modeless gestural interaction paradigm which enables users to 

create handwritten mathematical expressions and free-form diagrams. An interface of this 

type has been used for: cooperative object-oriented design (Damm et al, 2000), conceptual 

2D design (Gross & Do, 1996), conceptual 3D design (Igarashi et al. 1999; Zeleznik et al. 1996), 

musical score creation (Forsberg et al. 1998) etc. However one advantage of Mathpad is that 

its interface is modeless, which allows fluid transitions from e.g. drawing to writing down 

mathematical expressions. Authors’ criticism of other applications of similar type such as 

Mathematica, Maple and Mathlab is that mathematical notation is unconventional when 

compared to concepts which are intuitive in handwritten mathematics expressions. One of 

the authors’ goals was to design an application which would support computational activities 

including formula manipulation, diagram rectification and animal, which is accomplished by 

parsing the user’s input or by allowing the user to perform gestural operations (LaViola & 

Zeleznik, 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.MathPad user interface.  

Retrieved on the 15th of January 2017 from http://cs.brown.edu/~jjl/mathpad/ 

http://cs.brown.edu/~jjl/mathpad/
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Writing mathematical expressions and diagrams in MathPad is done by drawing with a stylus, 

whereas one complication would be how users can erase erroneous input. The authors 

designed a scribble erase gesture i.e. the user scribbles with the pen back and forth over the 

piece of input which he wishes to be deleted. The one obvious drawback of this feature, i.e. 

that the user may perform the gesture without meaning to delete anything, has been resolved 

by the authors by introducing an obligatory tap which follows the erasing gesture. One 

difficulty which arose with parsing the mathematical expressions was that it was hard to 

design the application in such a manner that it would algorithmically distinguish between 

mathematical lines, when some of the input is closely spaced or in an unusual arrangement. 

The authors therefore designed a manual segmentation of the input, i.e. the user needs to 

select a single mathematical expression by drawing a lasso, followed by a tap as by the erase 

gesture. The authors also included feedback into the MathPad application – the parsed 

mathematical expression with canonical versions of the original strokes. The reasons for this 

were 1) users can often distinguish characters and symbols in their own handwriting and wish 

to preserve the distinguishing characteristics of their handwriting style – the look, feel, spatial 

relationships of their notations because of aesthetics, subtle information detail and easy 

editing (Zanibbi et al. 2001). In case the there was an erroneous detail in the recognised 

expression, the users can simply scribble erase the details in question and rewrite them 

(LaViola & Zeleznik, 2007).  

 

The process of drawing diagrams in MathPad is the same as with mathematical expressions, 

with one exception that they do not require recognising. MathPad uses nailing diagram 

components, which uses a concept of ‘nails’ in order to pin a diagram element to the 

background or a point on an element of the diagram to another element of the diagram. 

Moving diagram elements results in either the other element moving to stay attached at the 

nail if it has only one or stretches in such a fashion that all its nails keep their positions of 

attachment. In the user interface this technique looks as follows: the user creates a nail by 

encircling the appropriate locating on the diagram and tapping inside of it. The application 

links all elements which intersect the circle and can be recognised as a small red circle where 

the nail’s location is. In turn, grouping diagram components is done if the lasso is drawn 

around the diagram strokes, followed by a tap. The application employs the Microsoft Tablet 
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PC SDK Divider API to distinguish between the lassoed strokes as being text or drawing 

(LaViola & Zeleznik, 2007).  

 

With regard to the associations between mathematical expressions and drawings, MathPad 

allows them to be made both explicitly and implicitly. To create an implicit association, the 

users are required to draw a variable name or value close to the drawing and then use the 

mathematical recognition gesture. For explicit associations the user needs to draw a line 

through the mathematical expressions and tap on the drawing. In both methods the user 

visualises which drawings, labels and expressions he wants to associate. MathPad’s ToolSet 

offers a range of computational functions such as graphing, solving, simplifying and factoring. 

Graphing is executed with a simple line gesture which starts at the function and ends at the 

intended graph location. The application recognises this gesture because it is too long to be a 

mathematical symbol and has no intersections or cusps. Process of equation solving is 

initiated when the user make a squiggle gesture which begins inside the box of recognised 

mathematical expression, and closely related gestures are employed for simplifying and 

factoring expressions. With regard to associating drawings with expressions, the drawing 

should be associated only if that particular expression participates in the computation of any 

variables falling in the category of the label family of the drawing’s variable label. In other 

words, if the drawing is labelled with a certain label, MathPad searches for expressions which 

are members of the label family with that particular variable on the left side, those with that 

variable appearing on the right side and so on. This searching process stops when there are 

no more variables to search for (LaViola & Zeleznik, 2007).  

 

MathPad creates coordinate systems by either using the initial locations of the elements of 

the diagram or by labelling linear dimensions on the diagram. In case there are two different 

drawings associated with certain mathematical expressions and each diagram has a different 

value for one of the coordinates, MathPad defines an implicit coordinate system. If a 

numerical label is applied to a diagram, MathPad draws information from the diagram, 

translating a horizontal line into the x-axis and the vertical into the y-axis. If not enough 

information is available, MathPad uses a default coordinate system. In case the expressions 

do not correspond to the associated drawings, MathPad corrects the mismatches by rectifying 

the diagram. First it analyses the diagram itself, then determines whether a mathematical 
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expression corresponding to drawing elements exists. If it does, it adjusts the diagram 

according to the expression. If not, it uses the diagram as a reference point. MathPad also 

entails the mathematical sketch animation feature. In order to execute the animation, the 

application first checks all drawings with associations to see if this is possible at all, as it is the 

case with for instance time functions. The mathematical expressions associated with the 

drawing elements in question are then sent to Matlab which calculates the expressions. All 

animations in MathPad last by default four seconds, but this as well can be adjusted (LaViola 

& Zeleznik, 2007).  

 

With regard to user feedback after working with MathPad, the authors outline the following: 

 Users expressed their wish to be able to also solve more complex problems such as 

double pendulum in MathPad 

 Effect of misrecognition and erroneous parsing has been pointed out, which increases 

with the complexity of mathematical input, specifically between for instance number 

5 and letter ‘s’, letter ‘x’ and + etc. 

 Some users readjusted their handwriting so that the parser could more easily 

recognise the input 

 Despite the encountered problems, the authors conjecture that mathematical 

sketching, as handwritten mathematical expressions and diagrams, can be a powerful 

tool in formulating and visualising mathematical concepts (LaViola & Zeleznik, 2007) 

 

5.2 3D software application as spatial abilities training tools by Christou 

et al 

 

Several software applications have been developed as a part of the DALEST project which aim 

at enhancing middle school students’ 3D geometry understanding and spatial visualisation 

skills. The developed applications focus on developing thinking and problem modelling 

abilities, analysing and solving problems. The goals of this project were: 1) to analyse the 

existing curriculum and evaluate teachers’ requirements with regard to teaching stereometry, 

2) develop a dynamic 3D software for teaching and learning stereometry, 3) use the 

developed software to teach teachers how to use it for stereometry teaching, 4) develop 

didactic situations with the applications, 5) test the developed software in different schools, 
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6) evaluate its effectiveness and teaching approaches. The project was conducted within the 

SOCRATES programme 2005-2006 of the EU (Christou et al, 2006).   

 

One of the applications developed and involved in this project was Cubix Editor, which allows 

the user to create 3D structures built of unit cubes. The application also allows the users to 

recolour individual cubes and calculate volume and surface area for the created pieces. One 

of the distinguished characteristics of the application is the rotation option, i.e. possibility for 

the user to rotate the whole platform and view the created pieces from different sides and 

angles. This dragging capability can be used to create didactical situations in which visual 

abilities such as ‘perceptual constancy’ and ‘mental rotation’ are exercised (Christou et al, 

2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Environment of the Cubix Editor.  

Retrieved on the 15th of January, 2017 from https://www.researchgate.net/figure/279653012_fig1_Figure-1-The-
Environment-of-Cubix-Editor 

 

Potter’s Wheel is another application developed within the scope of the DALEST project, 

which provides the user with possibility to rotate a 2D object (five simple 2D objects are at 

disposal) in 3D space, which results in a 3D object. Origami Nets on the other hand allows the 

user to build nets using triangles, squares, rectangles and regular polygons, with defining 

folding angles. Transition from 2D net and 3D solid object is done fluidly and adding new 

elements to the already existing net is done interactively. Rotation is of course a very 

important feature of this application with the help of which the user can visualise how the 

https://www.researchgate.net/figure/279653012_fig1_Figure-1-The-Environment-of-Cubix-Editor
https://www.researchgate.net/figure/279653012_fig1_Figure-1-The-Environment-of-Cubix-Editor
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object will look like from a different angle or side. Transition from 2D to 3D can be used to 

result in for instance a didactical situation in which the user tries to visualise how many times 

should the net be folded for it to result in a 3D object. The 2D objects available to use are: 

square, rectangle, triangle, regular polygon etc. The folding angle can be changed interactively 

and the object can be folded (3D) and unfolded (2D). There are 43 predefined nets included 

in the application (Christou et al, 2006).  

 

 

 

 

 

 

 

 

 

 

 

Figure 7. User interface of Origami Nets. 

 Retrieved on the 15th of January 2017 from http://www.elica.net/dalest/on.html 

Slider is an application in which it is possible to cut through an invisible 3D solid with a plane, 

where only the intersection is visible. By moving and rotating the plane the user can analyse 

it and try to reconstruct the 3D solid. Solids can also be made visible if the user wishes to. The 

application offers 16 different objects in various orientations and offers more than 90 

problems of various difficulty levels (Christou et al, 2006).  

 

 

http://www.elica.net/dalest/on.html


49 
 

 

 

 

 

 

 

 

 

Figure 8. User interface of Slider.  

Retrieved on the 15th of January 2017 from http://www.elica.net/dalest/sl.html 

Using the 3D Cube Net application the students are able to rotate different 3D cubes nets. By 

opening a new window which presents eleven possible nets they can try to visualise which 

presented net corresponds to the one presented earlier. Scissors application on the other 

hand offers a given target net of a cube. The user then needs to appropriately cut a cube in 

order to create the net which will be the result of unfolding. This application implements the 

opposite process of cube net folding and users can cut along any of the edges. In case they 

cut less edges than it is necessary, the application will cut the rest of the edges. However if 

they cut more than it is necessary, it will not be possible to produce a net (Christou et al, 

2006).  

 

 

 

 

 

 

Figure 9. Scissors application.  

Retrieved on the 15th of January 2017 from http://www.elica.net/dalest/sc.html 

 

http://www.elica.net/dalest/sl.html
http://www.elica.net/dalest/sc.html
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5.3 Development of educational software components by Roschelle et al 

 

The authors point out the problem which arises in software development which is a lack of 

contact between educational software developers and students, who are the end users of the 

software. Their idea was to replace the developmental process with a process of editing, 

creating and manipulating ‘editable applications’. Because of the simplicity of use, which 

would in some cases boil down to copying and pasting images, the teachers would have many 

more possibilities opening up. One possibility which such an approach offers is versatility, i.e. 

cross-subject use and adaptation of the same concept to different sciences, subjects or 

approaches. Problems which the authors anticipated were that a large library of components 

had to be developed and also that teachers as well as students needed to be encouraged to 

use the developed applications (Roschelle et al, 1999).   

In order to make these obstacles more easily abridgeable, the authors decided to employ the 

already existing applications as component-generating tools and for that purpose relied for 

the greater part on the Geometer’s Sketchpad and AgentSheets, which enable model export 

as JavaBeans. Geometer’s Sketchpad was chosen because it enables constructing arbitrary 

geometric models which can be easily shaped and adjusted whereas AgentSheets offers 

creating interactive simulations, which are also very flexible. Because Geometer’s Sketchpad 

and Agentsheets are already in widespread use and are familiar to both students and 

teachers, the authors have made one further step toward smoothening out the reception of 

application additions by the teachers and students (Roschelle et al, 1999).   

Components are wired together in JavaBeans but the wiring could not remain static, since the 

capabilities and connectivity of a certain component may vary depending on the context in 

which the component is used. Since Reflection mechanism which is offered by JavaBeans 

employs a static analysis and which naturally is not adequate for dynamic changes, the 

authors employed InfoBus which offers a more dynamic analysis as well as E-Slate, which 

dynamically assesses a component’s connection capabilities, whereas its user interface allows 

the user to make connections between compatible components. Two other wiring issues also 

needed to be addressed: the reflectivity of changes when linking components together and 

intracomponent issues, which refers to the fact that some of the components are rigid in their 

construction and adaption in some cases is hard if not impossible. While use of The 
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Educational Object Economy, which is a large educational Java Applet repository, might be 

suitable to solve the latter issue, it would require skills from teachers and students to work 

with Java source code. AgentSheets offers several user-programming paradigms like graphical 

rewrite rules, for the use of which one does not have to be a professional programmer 

whereas E-Slate is based on Logo, a high-level programming language used by educators. E-

Slate expands Logo into an adept component scripting language which enables the user to 

open public scripting interface of each component and thus make it easier for the users to 

work with it (Roschelle et al, 1999).  

In order to meet the needs of evolving software along with the curriculum and needs, the 

authors focused on a blend between component developers and application designers, which 

resulted in “Determining Component Granularity and Connectivity” sidebar, which helps 

identify the correct component size. Another issue the authors had to address was the fact 

that component developers lack the resources to create all the required components from 

scratch. Instead they start with models which have inadequate communication models or 

different communication protocols. Translators are one way of solving interoperability, along 

with wrappers. Translators adapts an already existing communication protocol, wrappers 

provide a communication layer around the component in question, which enables 

communication with other components. One advantage of wrappers is that they can reduce 

the application’s costs and risks in adapting the already existing component (Roschelle et al, 

1999).  

 

5.4 Effect of DGS software on mathematics teacher students’ spatial 

visualisation skills by Güven and Kosa 
 

The aim of the authors’ study was to examine the effect of activities in Cabri 3D on the 

development on mathematics teacher students’ spatial skills. The study was conducted in 

2007 and the sample consisted of 40 participants (22 male and 18 female) studying at the 

Karadeniz Technical University, Turkey. Pre-test and post-test were administered prior and 

posterior to the experimental programme, for which PSVT was used. The authors developed 

various activities for the students with Cabri 3D for at least 1.5 hours, spanning across 8 

weeks. After the completion of the experimental programme, the subjects again took the 

PSVT as post-test (Güven & Kosa, 2008).  
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Week Topic 

1 Learning to work in Cabri 3D, drawing basic geometric objects  

2 Obtaining point, circle, ellipse and hyperbola via cone intersections 

3 Vertical projection and trigonometric relations 

4 Reflection, transition and rotation in 3D space 

5 Obtaining various objects and surfaces by cutting prisms, unfolding the objects  

6 Estimating the folded state of objects given as unfolded in Cabri and then using the 
software to fold them 

7 Intersecting objects with various surfaces and planes and obtaining intersection curves 

8 Free exercises 

 
Table 4. Schedule of course activities, Güven and Kosa study (Güven & Kosa, 2008). 

The authors used descriptive statistics in order to have a complete picture of students’ spatial 

skills before running the experimental programme and after it. Additionally, the authors used 

t-test in order to compare the pre-test and post-test scores. Compared against subtests, on 

PSVT:D mean value on pre-test was 6.2 whereas mean value on post-test was 7.9. On PSVT:R 

mean value on pre-test was 5.7 and on post-test 7.8 and on the PSVT:V mean value on pre-

test was 3.8 and on post-test 5.7. Total value on pre-test was 15.7 and on post-test 21.4. T-

test showed that there was a significant difference between pre-test and post-test scores, 

with p<0.05 for all subtests (Güven & Kosa, 2008).   

From the pre-test results it is obvious that the students’ spatial abilities are rather low, 

especially on the PSVT:V where the average value was 3.8 out of maximum 12, but as well on 

the average total score which was 15.7 out of total 36. The authors propose two possible 

explanations for such low results on the pre-test: 1) geometrical content is in Turkish 

classrooms presented in 2D format on the blackboard and therefore the students had no 

opportunity to create and manipulate with 3D models, which is important for developing 

spatial skills, 2) geometry teaching in Turkey is largely based on procedural teaching, i.e. 

leaning formulae by heart. The post-test showed development of subjects' spatial skills, with 

the biggest increase visible in the rotations sections. Cabri itself corrects the possible reasons 

for low spatial skills scores because it allows the students to for instance rotate 3D 

geometrical objects and also enables them to learn geometrical concepts and explore 

geometrical relationships (Güven & Kosa, 2008). 
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5.5 Effects of coordinate geometry learning in Geogebra on mathematics 

achievement by Saha, Ayub and Tarmizi 
 

The aims of the authors’ study was to: 1) examine differences in average post-test scores 

between control and experimental group, 2) examine differences in average post-test scores 

between control and experimental group among HV (high visual-spatial ability) students, 3) 

examine differences in average post-test scores between control and experimental group 

among LV (low visual-spatial ability) students. The sample consisted of 53 students (27 in 

experimental and 26 in the control group), consisting of two homogeneous Form Four classes 

in Kuala Lumpur, aged 16-17. Additionally in each group the participants were sorted out into 

two sub-groups, according to the level of visual-spatial ability development, low and high, 

thus yielding four subgroups: GGHV and GGLV (participants with high visual-spatial abilities 

working in Geogebra and participants with low visual-spatial abilities working in Geogebra), 

CGHV and CGLV (participants not working with Geogebra with high visual-spatial abilities and 

participants not working in Geogebra with low visual-spatial abilities). In order to be able to 

sort the participants into sub-groups the authors administered the SVATI (Spatial Visualisation 

Ability Test Instrument), which consists of Cube construction tasks, 3D spatial ability tasks and 

mental rotation tasks (Alias, 2000). Two weeks before starting with the experimental 

programme, the authors administered the SVATI (Saha, Ayub, & Tarmizi, 2010).  

Work with the experimental group consisted of three phases:  

1. Introduction to Geogebra. Familiarisation modules were developed in order to help 

the students to get familiar with the software quickly and they were encouraged to 

explore various features.  

2. Basic concepts of the Coordinate Geometry and mathematical problems.  

3. Learning Coordinate Geometry along with GeoGebra. 7 learning modules were 

distributed (Saha, Ayub, & Tarmizi, 2010).  

 

After completion of the experimental programme, post-test was administered, which 

consisted of 6 subjection questions. Results of the independent t-test which compared post-

test results of the control (M=54.7, SD= 15.660) and experimental group (M= 65.23, SD= 

19.202; t(51)=2.259, p=0.028<0.05) showed that there was a statistically significant 

difference. Cohen’s η2 was approximately 0.09, which is a relatively small difference. 
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Obtained results imply that participants in the Geogebra group were significantly better in 

their achievements than the participants in the control group. Secondly, the authors 

examined the post-test results of the independent t-test comparing the results of the HV 

subgroup of the control group (M=61.667, SD= 13.793) and HV subgroup of the experimental 

group (M= 67.583, SD= 16.489; t(22)=0.953, p=0.351>0.05), which imply that there was no 

significant differences between mean scores. Cohen’s η2 was approximately 0.04, which is a 

very small difference. Lastly, the authors examined the post-test results of the independent 

t-test comparing the results of the LV control group (M=48.786, SD= 15.106) and LV 

experimental group (M= 64.067, SD= 21.569; t(27)=2.222, p=0.036<0.05). Cohen’s η2 was 

approximately 0.15, which is a large effect. From the obtained results it can be concluded that 

LV students benefited the most from the Coordinate Geometry course in Geogebra (Saha, 

Ayub, & Tarmizi, 2010). 

 

5.6 Bakar et al research on teaching mathematics using Geogebra among 

students with dissimilar spatial visualisation 
 

The authors’ study had two aims: 1) to examine the effects of experimental programme in 

Geogebra on quadratic function and 2) to examine the effect of the experimental programme 

on students with who have different spatial visualisation abilities as a predictor of their 

achievements in geometry. A pre-test, consisting of questions on the quadratic functions, and 

a test on spatial visualisation were administered to both experimental and control group. The 

spatial test was used to categorise the subjects into two groups – students with high and 

students with low spatial abilities. After this the experimental group continued with the 

experimental programme in Geogebra over the following seven weeks, whereas the control 

group continued with the traditional, conventional teaching programme over the same time 

span. At the end of the seven weeks mathematics post-test was administered to both groups 

(Bakar et al, 2015).  

ANCOVA analysis was conducted in order to determine the differences between the effects 

of two types of teaching, the conventional one and the experimental programme done in 

Geogebra, with the post-test scores as the dependent variable. Analysis showed that there 

was a statistically significant difference between the control and experimental group 

(F(1.68)=43.56; p=0.001; η2=0.157 ), which implies that the students in the experimental 
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group scored better on the post-test. Within the experimental group 12 students were sorted 

into the high spatial visualisation category and 23 into the low spatial visualisation category. 

Within the control group the division according to the level of spatial visualisation 

development was similar, 18 in each. Two-way ANOVA analysis showed that the differences 

in teaching (Geogebra and conventional) were not statistically significant for students with 

different spatial visualisation levels (F(1.67)=0.582; p=0.448). For the experimental group, the 

post-test average results were 17,50 for the high spatial visualisation group and 18.74 for the 

low spatial visualisation group, whereas for the control group the post-test average results 

were 12.89 for the high spatial visualisation group and 11.57 for the low spatial visualisation 

group. Viewed only with regard to spatial visualisation abilities, average results on the post-

test were 14.73 for the high spatial visualisation abilities students and 15.59 for the low spatial 

visualisation abilities students (Bakar et al, 2015).  

 

5.7 3DMath DGS by C.Christou, K.Jones, N.Mousoulides and M.Pittalis 
 

The authors’ aim with designing the 3DMath software was to enhance stereometry teaching 

in middle school, to enable the students to experiment with 3D objects. The authors argue 

that the way in which students are conventionally supposed to get a sense of 3D geometry 

from 2D is neither easy nor natural and even though available DGS can be used to construct 

3D objects, most of the applications do not enable the students to develop the ability to 

visualise 3D objects. For the design of the application key elements of visualisation as defined 

by Presmeg (1986), Bishop (1980), Clements (1982) and Gutiérrez (1996) were taken into 

consideration (Christou et al, 2006). 

3DMath enables the user to create 3D geometrical objects, which can be moved, manipulated 

and reshaped, which is intended to help the students to acquire and develop visualisation 

abilities in the context of 3D geometry. Apart from providing an exploratory environment for 

3D objects, 3DMath has been designed to incorporate other content except geometry. The 

design of the interface is intuitive and also enables multiple perspectives and representations, 

e.g. the user can view the constructed 3D object also in 2D. It also enables the users to focus 

on the mental images they create and the process of visualisation. The application enables 

the user to construct different solids and then perceive them in a concrete form and view 
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them from different perspectives, which helps them build a mental image. The design of the 

application also incorporates ideas of Bishop (1980), referring to the two relevant 

visualisation processes: 1) interpreting figural information and processing abstract 

information and 2) translating gathered information into visual terms, its manipulation and 

transformation from one mental image into another. The application enables the user to gain 

an insight into the concept of dimension by changing the axes, control over rotation of the 

constructed solid and also drawing preferences, i.e. choice between solid colours and 

transparent line view, atop with labelling, colouring and selecting edges and sides of the 

constructed objects (Christou et al, 2006).   

3DMath has been designed in such a way as to enable the development of the following 

visualization abilities (Gutiérrez, 1996): 1) figure-ground perception, 2) perceptual constancy, 

3) mental rotation, 4) spatial positions perception, 5) spatial relationships perception and 5) 

visual discrimination. Features of 3DMath accommodating the aforementioned abilities are 

1) dragging, 2) tracing, 3) measuring and 4) history. The dragging feature enables the user to 

rotate, move and resize 3D objects. Objects can be resized in only one dimension or 

proportionally. The tracing feature refers to the instance in the design of the interface where 

only parts of the object are shown, which aims at visual filtering of the main construction i.e. 

enable the user to view parts independently. Length of edges, surface of sides but also volume 

of the solid can be displayed, which are designed as dynamic, i.e. as the solids are resized, all 

measurements follow the changes. ‘History’ textual feature refers to the description of the 

figure, which aims at providing information of all objects involved in the construction, but also 

the means for other users to recreate the exact same solid. Exporting constructions in various 

formats is possible, which enables recording work for students and also to create education 

material for teachers (Christou et al, 2006). 

 

5.8 Overview of experimental programmes designed to enhance spatial 

abilities of STEM students 

 

In this section a summary of experimental programmes designed to enhance spatial abilities 

will be presented. Some of the studies such as Bakar et al (2015) and Saha, Ayub and Tarmizi 

(2010) have used their entire mathematics courses as a variation of experimental programme, 
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with both mathematics as well as spatial abilities tests administered before and after the 

course. Since some of the experimental courses entail a lot of mathematical exercises as tools 

for spatial abilities enhancement, it is in some cases difficult to differentiate between tools 

which serve only for spatial abilities enhancement and tasks which are a part of the actual 

course, given the fact that in the end results showed a statistically significant difference.  

 

Authors Participants Duration Tools 

Martín‐Dorta, 

Saorín and 

Contero (2008) 

40 students (25 males 

and 15 females) 

3 weeks  Google SketchUp 5 

 24 objects made of aluminium 

Sorby & 

Baartmans, 

(2000) 

 24 students (1993) 

 16 students (1994) 

 47 students (1995) 

 26 students (1996) 

 27 students (1997) 

 36 students (1998) 

10 weeks   hands on construction activities  

 paper and pencil activities 

 Miras  

Güven & Kosa 

(2008) 

40 participants (22 male 
and 18 female) 

8 weeks  Cabri 3D 

Bakar et al, 

2015 

35 (experimental 
group), 36 (control 
group) 

7 weeks  Geogebra 

Saha, Ayub, & 

Tarmizi, 2010 

53 students (27 in 
experimental and 26 in 
the control group) 

Whole 

course 

 Geogebra 

Table 5. Overview of experimental programmes with outlined authors, participants, duration and employed tools 

In the following table the actual content of experimental programmes as well as study results 

have been outlined, thus completing a picture of the studies done worldwide which focused 

on creating experimental programmes or courses aiming at enhancing spatial abilities. The 

duration of programmes varied from 3 weeks to whole courses, as well as the tools used, with 

paper and pencil method, Google SketchUp 5, Miras, Cabri 3D and Geogebra. Since positive 

correlation has been found in all the outlined studies, these studies can be considered as 

positively corroborated tools for spatial abilities enhancement, despite of the fact that the 

duration, the employed tools, participants and actual content of the programme widely 

varied.  
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Authors Content Results 

Martín‐Dorta, 

Saorín and Contero 

(2008) 

 Building 3D models based on the 
appearance of the aluminium objects  

 Creating a daily object 

 Creating 3D models corresponding to 
parts given by their axonometric 
projection 

 Constructing 3D models of parts 
which are represented by their 
orthographic views 

 Group work 

Gain differences on the MRT 

test was 5.48, whereas on the 

DAT:SR was 8.30, regardless of 

gender (t-test for independent 

series p= 0.552 and p= 0.868) 

Sorby & 

Baartmans, (2000) 

 isometric and orthographic sketching 

 orthographic drawings and 
applications 

 pattern development 

 Two and three coordinate drawing 

 Translation and scaling 

 Object rotation 

 reflection of objects and applications 

 Cross-sections of solids 

 surfaces and solids of revolution and 
the intersection of solids 

 1993: gain 9.17, t-value 
12.5, p<0.0001 

 1994: gain 9.69, t-value 
10.7, p<0.0005 

 1995: gain 6.66, t-value 
12.2, p<0.005 

 1996: gain 9.42, t-value 
9.42, p<0.0005 

 1997: gain 8.89, t-value 
9.91, p<0.0005 

 1998: gain 6.53, t-value 
10.46, p<0.0005 

Güven & Kosa 

(2008) 

 Learning to work in Cabri 3D, 
drawing basic geometric 
objects  

 Obtaining point, circle, ellipse 
and hyperbola via cone 
intersections 

 Vertical projection and 
trigonometric relations 

 Reflection, transition and 
rotation in 3D space 

 Obtaining various objects and 
surfaces by cutting prisms, 
unfolding the objects  

 Estimating the folded state of 
objects given as unfolded in 
Cabri and then using the 
software to fold them 

 Intersecting objects with 
various surfaces and planes 
and obtaining intersection 
curves 

 Free exercises 
 

 Total value on pre-test was 
15.7 and on post-test 21.4  

 T-test showed that there 
was a significant difference 
between pre-test and 
post-test scores, (p<0.05) 

 

Bakar et al, 2015 Same course in mathematics, with the 
difference that experimental group 

statistically significant 
difference between the 
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worked in Geogebra and the control 
group worked using traditional teaching 
methods 

control and experimental 
group (F(1.68)=43.56; p=0.001; 
η2=0.157 ) 
 

Saha, Ayub, & 

Tarmizi, 2010 

 Introduction to Geogebra. 
Familiarisation modules were 
developed in order to help the 
students to get familiar with the 
software quickly and they were 
encouraged to explore various 
features.  

 Basic concepts of the Coordinate 
Geometry and mathematical 
problems.  

 Learning Coordinate Geometry along 
with GeoGebra. 7 learning modules 
were distributed  

independent t-test compared 

post-test results of the control 

(M=54.7, SD= 15.660) and 

experimental group (M= 65.23, 

SD= 19.202; t(51)=2.259, 

p=0.028<0.05) 

 

While the study done by Martín‐Dorta, Saorín and Contero (2008) lasted only three weeks, 

pre-graphics course designed to enhance spatial abilities by Sorby and Baartmans (2000) 

spanned throughout 10 weeks. The two studies which did not create an experimental 

programme explicitly for the purpose of spatial enhancement but rather opted to use 

GeoGebra with the already existing mathematical course content done by Bakar et al, 2015 

and Saha, Ayub, & Tarmizi (2010) nevertheless showed positive correlation between the pre-

test and post-test in spatial abilities. Both studies employed GeoGebra, which software is 

known for its ease of use and also applicability in mathematical courses. Güven & Kosa (2008) 

study employed Cabri 3D with mostly mathematical content, whereas Martín‐Dorta, Saorín 

and Contero (2008) focused mainly on the content applicable for students of engineering 

(orthographic view, sketching 3D models). 

Despite of differences in content and duration all these studies need to be taken into account 

when creating an experimental programme aiming at enhancing spatial abilities, since results 

clearly show their significance.  
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6 GeoGebra 
 

GeoGebra was developed as a part of Markus Hohenwarter’s master’s thesis, entitled 

GeoGebra – a Software System for Dynamic Geometry and Algebra in the Plain (in original: 

GeoGebra - Ein Softwaresystem für dynamische Geometrie und Algebra der Ebene). 

Hohenwarter got the idea for the software by analysing the applications which were available: 

the CAS, Computer Algebra Systems such as Maple and Mathematica and DGS such as Cabri, 

Cinderella and CAD. According to the author, the DGS applications enable the user to draw 

geometrical objects and manipulate them, but the algebraic input is limited in such a way that 

with some of these applications it is e.g. possible to see the equation describing the shown 

geometrical object, but the equation itself cannot be manipulated or changed by the user. 

The CAS applications on the other hand enable the user for instance to change the equations 

and also draw the objects described by the equations, however the geometric representation 

cannot be changed. After analysis of advantages and disadvantages of the available 

applications, the author intended to connect these two types of software, in a way that each 

object would be shown in two ways: algebraically and geometrically. When the user 

manipulates the geometrical representation in some way (shifting, rotating, reflecting), the 

changes in the geometrical representation are instantly visible in the algebraic 

representation, but also vice versa. Such an approach to the development of the application 

was aimed at resulting in a close connection between algebra and geometry (Hohenwarter, 

2002).  

 

Since its development, GeoGebra received several international software awards: European 

Academic Software Award 2002 (Ronneby, Sweden), L@rnie Award 2003 (Vienna, Austria), 

digital 2004 (Cologne, Germany) and Comenius 2004 (Berlin, Germany) (Hohenwarter & 

Fuchs, 2004). 

 

6.1 General GeoGebra features and GeoGebra 5 novelties 
 

As interactive geometry software, GeoGebra has been designed primarily for students and 

aimed at being a mathematics learning tool, approaching it in an experimental way. The 

dragging feature of GeoGebra enables the user to investigate changes in the geometrical 

object or shape while following the changes in the algebraic representation, thus investigating 
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how e.g. parameters of a circle equation change. Changes are possible at any point, including 

inserting new elements and also changing the order (Hohenwarter & Fuchs, 2004).  

GeoGebra offers four different views, displayed in different representations which are 

dynamically connected: algebra, graphics, CAS, 3D graphics and spreadsheet view. Graphics 

and algebra view are opened simultaneously by default. Using the input field or the input bar, 

for which also a wide range of commands is available, it is possible to directly enter algebraic 

expressions, with the graphic representation automatically displayed in the graphics view. If 

3D graphics view is selected, again algebra view is opened simultaneously by default. 

Spreadsheet view enables the user to work with data and statistics, and is opened by default 

alongside of the graphics view. It is also possible to import data in the spreadsheet view in 

GeoGebra, either by simply copying and pasting or by using import data feature (GeoGebra 

Manual, https://wiki.geogebra.org/en/Manual).  

Figure 10. GeoGebra algebra and graphics view. 

Point coordinates, vector coordinates, equations etc. are all visible in the algebraic window, 

whereas the graphic window mirrors the changes in the algebraic input simultaneously, in 

https://wiki.geogebra.org/en/Manual
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which also text input is possible. Toolbar is placed directly under the menu bar, where not all 

buttons are visible straight away, but are offered in a dropdown menu (GeoGebra Manual, 

https://wiki.geogebra.org/en/Manual).  

Graphics tools are sorted in several groups:  

Movement Tools: 1) Move tool, 2) Move around Point Tool.  

Point Tools: 1) Point Tool, 2) Point on Object Tool, 3) Attach/Detach Point Tool, 4) Intersect 

Tool, 5) Midpoint or Center Tool, 6) Complex Number Tool, 7) Extremum Tool, 8) Roots Tool. 

Line Tools: 1) Line Tool, 2) Segment Tool, 3) Segment with given length tool, 4) Ray Tool, 5) 

Polyline Tool, 6) Vector Tool, 7) Vector from Point Tool.  

Special Line Tools: 1) Perpendicular Line Tool, 2) Parallel Line Tool, 3) Perpendicular Bisector 

Tool, 4) Angle Bisector Tool, 5) Tangents Tool, 6) Polar or Diameter Line Tool, 7) Best Fit Line 

Tool, 8) Locus Tool.  

Polygon Tools: 1) Polygon Tool, 2) Regular Polygon Tool, 3) Rigid Polygon Tool, 4) Vector 

Polygon Tool.  

Circle and Arc Tools: 1) Circle with Centre through Point Tool, 2) Circle with Centre and Radius 

Tool, 3) Compass Tool, 4) Circle through 3 Points Tool, 5) Semicircle through 2 points Tool, 6) 

Circular Arc Tool, 7) Circumcircular Arc Tool, 8) Circular Sector Tool, 9) Circumcircular Sector 

Tool.  

Conic Section Tools: 1) Ellipse Tool, 2) Hyperbola Tool, 3) Parabola Tool, 4) Conic through 5 

Points Tool.  

Measurement Tools: 1) Angle Tool, 2) Angle with Given Size Tool, 3) Distance or Length Tool, 

4) Area Tool, 5) Slope Tool, 6) Create List Tool.  

Transformation Tools: 1) Reflect about Line Tool, 2) Reflect about Point Tool, 3) Reflect about 

circle Tool, 4) Rotate around Point Tool, 5) Translate by Vector Tool, 6) Dilate from Point Tool.  

Special Objects Tools: 1) Text Tool, 2) Image Tool, 3) Pen Tool, 4) Freehand Shape Tool, 5) 

Relation Tool, 6) Function Inspector Tool.  

https://wiki.geogebra.org/en/Manual
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Action Object Tools: 1) Slider Tool, 2) Check Box Tool,  3) Button Tool, 4) Input Box Tool.  

General Tools: 1) Move Graphics View Tool, 2) Zoom in Tool, 3) Zoom out Tool, 4) Show/Hide 

Object Tool, 5) Show/Hide Label Tool, 6) Copy Visual Style Tool, 7) Delete Tool (GeoGebra 

Manual, https://wiki.geogebra.org/en/Manual).  

The input bar, which is normally positioned at the bottom of the interface, is not displayed by 

default in the Algebra View, however can be shown using the View Menu. The input bar allows 

the user to create and redefine mathematical objects, but also allows command input, which 

follows a simple syntax. For instance in order to yield all local extrema of a function, the 

command Extremum [ ] is given. After entering each command it is required to hit Enter key. 

Some of the syntax, e.g. indices, follow the LaTeX syntax (GeoGebra Manual). All available 

commands are displayed in the dropdown menu on the right bottom side. GeoGebra requires 

the user only to start typing the beginning of a command, and then offers the correct syntax 

which is accepted again by hitting the Enter Key (Šuljić, 2005). 

Context Menu is opened by right clicking the object and offers access to advanced properties 

of an object (e.g. polar or Cartesian coordinates). Navigation bar offers a set of buttons and 

displays the number of construction steps. It enables the user to move from one step to the 

other, going forward or backward and also play the construction (GeoGebra Manual, 

https://wiki.geogebra.org/en/Manual). 

Novelties in GeoGebra 5 feature new Tools: Plane, Right Prism, Sphere and View in front of 

Tool, with Freehand Shape Tool improved to recognize ellipses. Points, vectors, lines, 

segments, rays, polygons and circles got extended to 3D, whereas new object types feature 

e.g. planes in 3D, also geometrical objects like pyramids, prisms, spheres, cylinders and cones. 

Moreover, moving objects in 3D, translation, rotation and zoom in 3D have been introduced. 

Many new commands have been developed or improved, along with commands for work in 

3D (GeoGebra Manual, https://wiki.geogebra.org/en/Manual).  

 

6.2 GeoGebraWeb, GeoGebraTube , Smartphones App, GeoGebraWiki  
 

Since 2009 the desktop version of GeoGebra and the mobile version have been two different 

applications with two separated source code trees. This has been done in order to explore 

https://wiki.geogebra.org/en/Manual
https://wiki.geogebra.org/en/Manual
https://wiki.geogebra.org/en/Manual
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whether it was feasible to make the GeoGebra applets work without Java plugins, based only 

on HTML5. In 2011 the developers decided to split the GeoGebra desktop code into the 

“common” project and a subproject “desktop” for the GUI. The former GeoGebraMobile 

would get its own subproject, but relying on the “common” part, without regard to the 

“desktop” subproject. The subproject on the former GeoGebraMobile was developed and 

called GeoGebraWeb (Ancsin, Hohenwarter & Kovacs, 2013).  

The so-called dynamic worksheets, interactive HTML pages, can be created in GeoGebra, for 

which the application itself does not need to be installed in order to use the worksheet. The 

worksheets however used to be dependent on use in browsers which support Java. The 

application can be run on any platform (Win, Unix, Linux, MacOS) and can be run via internet 

(Hohenwarter & Fuchs, 2004).  The GeoGeobraTube was started in September 2011 as a place 

for sharing GeoGebra worksheets and resources. GeoGebraTube has been using the 

GeoGebraWeb viewer as a way to present interactive worksheets to devices not supporting 

Java applets since March 2012, such as iPads, Chromebooks or Android tablets. Compatibility 

between GeoGebraWeb and GeoGebra desktop version is ensured through their sharing of 

the “common” source code.  Through the desktop GeoGebra it is possible to upload material 

to the GeoGebraTube easily, where the GeoGebraWeb enables easy use of the uploaded 

material, non-dependant on the device used. In May 2012 the authors published a first 

version of GeoGebraWeb in Chrome Web Store, which enables the creation of new 

constructions without the need of Java plugin, where algebra view as well as input bar are 

available, with many languages supported. Sharing worksheets and files is possible through 

saving them on GeoGebraWeb to Google Drive and then sharing through Gmail or Google+ 

(Ancsin, Hohenwarter & Kovacs, 2013).  
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Figure 
11. GeoGebraTube. 

Retrieved on the 8th of February, 2017 from https://www.geogebra.org/m/xwGbTuzE 

Creating a GeoGebra app for smartphones was a project which needed to unite the special 

features and requirements of GeoGebra and the limited resources of smartphones. The 

screen size is different and the hardware components are different, as the processor speed 

and storage capabilities are different on smartphones. The developers had to meet all this 

criteria while developing the GeoGebra app for smartphones (Tomaschko & Hohenwarter, 

2016).  

The app is available since December 2015 in Google Play Store. Once it is installed and 

opened, an empty GeoGebra file is shown with graphics and algebra window open. The 

GeoGebra tool list is shown on the upper left side when tapped on the edit symbol. The 

created objects can then be manipulated, moved or their properties changed by touching the 

screen. A single virtual keyboard is offered for the input of algebraic expressions, specially 

adapted for input of mathematical formulae. Additionally the formula editor is offered which 

checks the input of GeoGebra commands and mathematical expressions. It is possible to save 

one’s work after login with the GeoGebra account and also to search for available materials, 

which is shown in size adapted to screen (Tomaschko & Hohenwarter, 2016).  

https://www.geogebra.org/m/xwGbTuzE
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Figure 12. GeoGebra 3D App. 
 

Retrieved on the 10th of January from https://play.google.com/store/apps/details?id=org.geogebra.android.g3d  

Due to the suggestions of many teachers, GeoGebraWiki has been created in 2005 as a 

platform for exchange of teaching materials done in GeoGebra. Every user can upload 

material via GeoGebra Upload Manager and link it with the appropriate GeoGebra Wiki site. 

Before 2011 there were three problems with uploading worksheets: 1) in order to link the 

materials to a GeoGebra Wiki site, appropriate commands needed to be entered directly into 

the source code, 2) searching tool for materials was very limited in its capabilities, 3) material 

exchange itself was rather inconvenient due to the complexity of the upload process – first a 

HTML website had to be created with GeoGebra, the materials had to be uploaded using the 

GeoGebra Upload Manager and thirdly the materials needed to be linked with appropriate 

sites in GeoGebra Wiki (Gassner & Hohenwarter, 2012).  

GeoGebraTube was created in 2011 as an alternative to GeogebraWiki. Its advantages were: 

1) direct worksheet upload (the user needed to click on “File” and then “Publish”), 2) the 

searching tool was improved, and worked on the basis of metafiles and keywords, 3) easy way 

https://play.google.com/store/apps/details?id=org.geogebra.android.g3d


67 
 

to rate the uploaded material and post comments. Additionally, the worksheets can be shared 

on Google+, Facebook, Twitter or simply email, thanks to the “embed-code” (Gassner & 

Hohenwarter, 2012).   

In 2007 the developers established the International GeoGebra Institute, in order to support 

and assist the rapid growth of the GeoGebra community. The aims of the Institute are to offer 

training and support of educators, develop teaching materials and the software itself, conduct 

research and reach out to communities which are less well-off. The IGI acts as an umbrella 

association which unites local GeoGebra institutes across the world, established by teachers 

and researchers, focusing on their own needs, interests and priorities. Local institutes can 

post their meetings and workshops on the GeoGebra website and specialised GeoGebra 

conferences across the world are organised. The local institutes help with training and 

supporting teachers in their communities and are also involved in projects, locally but also 

globally important (Hohenwarter & Lavicza, 2010).  

 

6.3 Advantages of GeoGebra 
 

The advantages of GeoGebra and its versions have been summed up by various authors as 

follows: 

 Allows school notation input (Hohenwarter & Fuchs, 2004) 

 Independent of the platform and also does not need to be even installed on the device 

(Hohenwarter & Fuchs, 2004) 

 Parallel running, dynamic graphics and algebra window (Hohenwarter & Fuchs, 2004) 

 Managing jumping objects: in Cabri when an ellipse becomes a hyperbola the 

intersection points for two conic sections can permutate, whereas in GeoGebra this 

continuity problem is managed via a heuristic approach to eliminating jumping objects 

(Hohenwarter & Fuchs, 2004) 

 Very user-friendly. It offers an interface which is easy to use, multilingual menus, 

commands and help files (Palve, 2016) 

 Encourages students to create mathematics projects, make presentations and engage 

in experimental learning. Because variables can be manipulated by dragging free 

objects or using sliders and easy changes to free objects can be made through which 
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process the students can learn how the dependant objects are affected by the 

changes, the students are given the opportunity to solve problems by experimenting 

with mathematical relations (Palve, 2016) 

 Personalisation of constructions and projects is possible (e.g. font size, graphics 

quality, colours, line thickness, line style etc.) (Palve, 2016) 

  GeoGebra offers a good opportunity for work in groups, interactive class teaching or 

individual/group students’ presentations (Palve, 2016).   

 Worksheets can be easily published (Palve, 2016) 

 GeoGebra encourages teachers to use  it as a tool for visualisation and investigation 

in mathematics and also for interactive mathematics classes (Palve, 2016) 

 GeoGebra documentation is reliable and easily understandable, there is a myriad of 

resources available on GeoGebraTube and also support on forums is quick and expert 

(Morphett, Gunn & Maillardet, 2015) 

 

6.4 Criticism of GeoGebra 
 

Criticism and deficiencies of GeoGebra have been summarised by authors in the following 

way: 

 

 GeoGebra commands can prove to be a challenge for students who do not have 

programming experience (Palve, 2016) 

 For some students independent work and experimenting with GeoGebra may not be 

appropriate (Palve, 2016) 

 GeoGebra does not have a built-in animation modules (Palve, 2016) 

 Research on how GeoGebra affects teaching and mathematics learning is limited 

(Palve, 2016) 

 Poor performance when running applets in HTML mode, especially for larger applets 

or complex animations, which varies with hardware and software configuration 

(Morphett, Gunn & Maillardet, 2015) 

 Software bugs with regard to applets which refer to e.g. function not working as 

expected or constructions which cause an application crash (Morphett, Gunn & 

Maillardet, 2015) 
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 GeoGebra’s mathematical functions library is not as extensive as it might be required 

(Morphett, Gunn & Maillardet, 2015) 

 

6.5 GeoGebra in education in general and in the Republic of Croatia 

 

Generally, the role of mathematical software in teaching mathematics is certainly an 

important one and Schneider (2002) summarises four aspects that mathematical software 

can offer to the process of mathematics teaching (Schneider, 2002):  

1) multiple display options: availability of different display ways of mathematical content, 

along with gradual transition from one display to the other  

2) experimental work: students being able to experiment in software in order to gain new 

knowledge, ideas and problem solving approaches 

3) elementarisation of mathematical methods: software enabling the use of elementary 

methods which have been abandoned due to the complex calculations  

4) modularity: software enabling to directly invoke commands and not have to bother with 

algorithms or calculation methods (Schneider, 2002).  

According to Hohenwarter and Fuchs (2004), GeoGebra can be used for mathematics classes 

in different ways:  

1. Demonstration and visualisation: GeoGebra has a wide range of coverage because it 

offers various representations 

2. Construction tool: Karl Fuchs pointed out on 1990 the importance of blending 

traditional methods and computer aided drawing in teaching geometry, for which 

purpose GeoGebra satisfies all criteria.  

3. Discovering mathematics using GeoGebra, and giving the students the opportunity to 

organise knowledge on their own.  

4. Preparing teaching materials: GeoGebra encourages the teachers to use it for 

preparing educational material as a cooperation, communication and representation 

tool (Hohenwarter & Fuchs, 2004).  
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As stated before, GeoGebra can be used as tool for experiments or to clarify or present certain 

concepts to the whole class. Its developer, Markus Hohenwarter (2004), summarises the 

purposes of GeoGebra as a presentation and experimentation tool in the following way: 

 Start with an empty desktop and then create a construction in front of the class  

 Load parts of a construction with appropriate additions  

 Use an already completed construction, where it is also possible to choose to execute 

the construction step-by-step (Hohenwarter, 2004). 

GeoGebra is also available in Croatian language and since it is an open source application, it 

is easily accessible to students. Indeed Šuljić (2005) finds that GeoGebra has grown in 

popularity in the Republic of Croatia because, among other reasons, it is freeware software. 

For other reasons for its popularity he gives (Šuljić, 2005):   

1) It is a professionally made programme, which has won many European software rewards 

(including those for educational software) 

2) It is available in Croatian.  

3) It covers mathematical programmes for elementary and secondary schools in the Republic 

of Croatia  

4) Is able to bring geometry and algebra closer than any other programme 

5) Entails an intuitive algebraic equation input   

6) It is easy to use for both teachers and students 

7) A student can use it since the fifth grade of elementary school until he graduates from 

secondary school 

8) It has high-quality graphics, suitable especially for classroom projections 

9) Applet construction and publishing it are easy to do with GeoGebra   

10) The constructions can be exported to other presentations or programmes, including LaTEX 

(Šuljić, 2005). 
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Regarding the use of GeoGebra in the Republic of Slovenia, Lipovec and Zmazek warn against 

using GeoGebra applets as teaching materials, arguing that solving a mathematical problem 

in GeoGebra during class also serves as a teaching lesson in how to use GeoGebra. Authors 

furthermore argue that GeoGebra applets are more suited for homework or independent 

research during class (Lipovec & Zmazek, 2014). Similarly, a web portal called E-um for 

teaching and learning mathematics, focusing primarily on the mathematical curriculum in 

elementary schools and secondary education had been developed between 2006 and 2009. 

With materials continuously being added to the portal, it contains over 1200 e-learning 

materials for mathematics lessons and among other content, also GeoGebra applets 

(Repolusk, 2009).  
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7 Framework for spatial abilities training in GeoGebra  
 

7.1 Introduction 

 

One of the studies which inspired the developed experimental programme was done by 

Martin-Dorta, Saorin and Contero (2008), who created a spatial skills training remedial course 

for engineering students studying civil engineering at the University of La Laguna in Spain, for 

which they used physical objects and Google SketchUp5. After getting familiar with the 

program, the subjects were required to create a 3D model of an aluminium object they were 

given by first sketching it on paper and then in software. The second research phase entailed 

students creating 3D models which corresponded to the parts given by their axonometric 

projection. During the last phase the subjects needed to construct 3D models of parts given 

their orthographic views. The authors administered the MRT and DAT:SR as pre- and post-

tests. The results showed gain differences on the MRT test (5.48) and on the DAT:SR (8.30) 

(Martín‐Dorta, Saorín, & Contero, 2008).   

Sorby and Baartmans (2000) developed a course in 1993 on the MTU with the purpose of 

improving the spatial skills of freshmen. Before starting with the course the authors 

administered the PSVT:R, MRT, MCT and DAT:SR. During first week the students were 

introduced to the need for visualisation skills in STEM fields. In second week the students 

were given coded plans and a set of cubes and were instructed to construct a building with 

the cubes according to the plans. Classes in third week entailed making orthographic and 

isometric sketches of objects containing inclined surfaces. During classes in fourth week the 

subjects were working with unfolded patterns which needed to be folded into 3D. In fifth 

week the students learned 2D and 3D coordinate drawing – students learned how to locate 

specific points in space and use a table a coordinate date in order to draw their models. In 

sixth week 3D transformations were introduced and it was required of the students to draw 

objects after translation and scaling. Classes in seventh week entailed working with objects 

made of snap cubes and after rotating them to sketch isometric views of the objects. During 

the course of the eighth week it was required of the students to construct reflected images, 

for which purpose Miras was used, whereas during week nine the students worked with cross-

sections of solids. In week ten it was required of the students to sketch the surfaces of solids 
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which were the result of rotation of planar figures around an axis and vice versa (Sorby & 

Baartmans, 2000).  

On the sample consisting of 535 subjects (418 male and 117 female) the PSVT:R was 

administered at the beginning of the year and the average percent of correct answers on the 

test was 79.6% for males and 68.1% for females, along with a background questionnaire. 

While on the pretest the students scored an average of 15.5%, on the post-test the students 

scored a mean test score of 24.7% (Sorby & Baartmans, 2000).  

Güven and Kosa (2008) conducted a study in 2007 on the sample consisting of 40 participants 

(22 male and 18 female) studying at the Karadeniz Technical University in Turkey. The authors 

administered pre-tests and post-tests, which consisted of PSVT:R, PSVT:D and PSVT:V, prior 

and posterior to the experimental programme. The experimental programme itself ran 

throughout the course of eight weeks. The authors developed various activities which were 

done in Cabri 3D for at least 1.5 hours weekly. During the course of week one the students 

learned how to work in Cabri 3D and how to sketch basic geometric objects. During week two 

the students learned how to obtain point, circle, ellipse and hyperbola by using cone 

intersections whereas in week three they worked with vertical projection and trigonometric 

relations. In week four various rotation, reflection and transition exercises were done in 3D. 

In week five the students learned to obtain different surfaces and objects by cutting prisms 

whereas in week six they worked with unfolded objects in Cabri, estimating the appearance 

of the object when folded and vice versa. During week seven the students learned to obtain 

intersection curves by intersection objects with surfaces and planes and work in week eight 

comprised of free exercises (Güven & Kosa, 2008).  

On PSVT:D the mean value was 6.2 on the pre-test and 7.9 on the post-test, on PSVT:R the 

mean value on the pre-test was 5.7 and 7.8 on the post-test whereas on PSVT:V the mean 

value on the pre-test was 3.8 and on the post-test 5.7. On the whole PSVT the mean value for 

pre-test was 15.7 and on the post-test 21.4, with t-test showing a statistically significant 

difference between the pre-test and post-test scores (p<0.05) (Güven & Kosa, 2008). 

The described studies aimed at improving students’ spatial abilities. Some of these studies 

lasted for a whole semester, whereas some were designed as a shorter course. The author’s 

developed experimental programme has been designed to run across four weeks, adapted to 
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the university at which it was being held, its resources and offered options. The exercises 

done were also adapted to the time given with the students and also to their pace of learning 

and applying knowledge. Introductory lesson during which the subjects learned to work in 

GeoGebra has been necessary since the subjects’ experience with working in mathematical 

software in general has been minimal and insubstantial to match the relative complexity of 

the exercises in the experimental programme.  

The wooden models created and used in our experimental programme have not been as 

elaborate and complex as those used by Martin-Dorta, Saorin and Contero (2008) because of 

the following reasons: 1) the subjects were not engineering students and their previous 

experience with working with sketching objects was minimal, which is why it was decided to 

use less complex objects, 2) due to the time frame given for the experimental programme 

which was limited, it was decided to focus on work with wooden objects during the course of 

a single lesson.  

With regard to the exercises done in third week of the experimental programme it must be 

pointed out that while it would also be valuable to work with rotation and reflection in 3D, 

2D was more applicable and feasible in GeoGebra. While the students could easily mark points 

in 2D, connect them using the ‘polygon’ tool and then check their solution using the 

appropriate tool, the current version of GeoGebra does not yet support connecting points in 

3D space in order to form a geometrical object which is why the exercises were designed for 

2D only.  

During the lessons in week four of the experimental programme various mathematical 

problems have been presented with emphasis on visualisation. Again due to the limited time 

frame planned for this lesson a couple of mathematical problems have been chosen and 

presented to the subjects, which have been in turn split into two levels: level one (basic) and 

level two (advanced). While it was expected of some subjects to show proficiency in solving 

mathematical tasks of this sort, who would also have no problems with visualisation, it was 

likewise expected of some subjects to struggle with solving the problems, which is why the 

tasks have been split into two levels, what is in line with methodical approach to teaching any 

mathematical content.  
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It must be pointed out that the whole programme was conducted within limited time frames. 

It was hoped however that in the future a similar experimental programme could be 

conducted, based on the same principles and featuring similar content, but spanned over a 

longer period and going more in depth with the content and the exercises. Likewise it is 

expected that a more elaborate version of the experimental programme would yield better 

results.  

Experimental programme with the predicted duration of four weeks has been designed for 

the experimental group, which has been divided into two equal groups. It has been 

beforehand decided that the experimental groups should not be larger than 20-25 students 

in order for the teacher to be able to control the correct execution of all steps. It has also 

been concluded that the experimental programme would be presented to 50-60 students, 

but not less than 35. The reason for such a small sample lies in the fact that the exercises 

would not just be handed out by the researcher and then the students’ work examined upon 

completion of each exercise, but that the exercises need to follow a specific number of steps:  

 First step: the student needs to visualise the problem given.  

 Second step: the student needs to sketch it using pen and paper method.  

 Third step: the student sketches the problem in Geogebra.  

 Fourth step: advanced exercises and individual analysis of similarities and differences 

between the computer and paper sketches for the purpose of advancing their spatial 

abilities, which has been left to the subjects. 

These four steps aim at students first creating a mental image of the problem given, sketching 

their mental image using pen and paper method and only then using software to sketch the 

problem so that they could compare what they visualised before and the image they got 

sketching in GeoGebra. It is hypothesised that the method of first visualising the problem and 

then confirming their mental image in software would be a great aid in the whole process of 

spatial abilities training.  

Upon the completion of the programme every student and his individual progress were 

analysed, as well as the initial and final testing, which was done with the control group at the 

same time as with the experimental one.  
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The number of subjects needed to be much larger than the expected valid sample size 

because the experimental programme has been conducted throughout the course of four 

weeks and it was expected that some students would not attend all of the sessions and would 

have to be eliminated from the research.  

The control group was a parallel group of students also in their first year and studying at the 

same university as the experimental group but they did not attend the experimental 

programme. The control group simply continued with their usual activities and were not 

subjected to any type of influence whatsoever. In a nutshell both students sorted in the 

experimental and in the control group studied at the same university, were of the same age 

and came approximately with the same knowledge from high schools (as judged by the 

entrance exams). The only difference between them was the fact that half of them 

participated in the experimental programme and the other half did not.  

In the following few sections it will be outlined which type of exercises had been done with 

subjects during classes. The framework itself has been designed flexibly in the sense that the 

exercises could be adapted and extra GeoGebra materials could be used, taking into 

consideration the students’ capabilities and technical/time management details. 

7.2 First week 

Work undertaken in the first week was introductory work in GeoGebra 5, i.e. learning how to 

use for instance 3D and 2D view, how the input field functions and the syntax required. After 

the subjects have familiarised themselves with basic commands in GeoGebra, it was 

proceeded to first visualising and then sketching geometrical objects, which aimed at serving 

as the opportunity to apply the basic knowledge they have gained during this introductory 

class.  

Exercise 1. Draw a line through two points A=(1,2,3) and B=(3,1,2).  

Method 1: Click on “point”, establish x and y coordinates, then drag upwards in order to 

define the z coordinate. While doing so the students could follow in the algebra window what 

was happening. In case they defined the coordinates wrong, they could right-click the point 

in the algebra window, click on “properties” and redefine the coordinates.  
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After this has been done, the students needed to click on “line through two points” and click 

on one of them. Once the line appeared, they needed to position it to run through the second 

point and then click again. Now the line equation was visible in the algebra window.  

Method 2: The students could also enter commands in the input field: 

A=(1,2,3)  

B=(3,1,2)  

Line[A,B] 

Exercise 2. Sketch a sphere with the centre in point C=(4,1,3) and diameter 6. 

Method 1: First, 3D view needed to be activated. Once this has been done, the students 

could simply click on “Sphere” button, define the centre by clicking on the point after what 

GeoGebra asked for radius.  

Method 2: The students could also enter commands in the input field: 

C=(4,1,3) 

Sphere[C,3] 

After they have completed this task they have been asked to use the “rotate” tool in order to 

view the sphere from different angles.  

Exercise 3. Sketch a regular square pyramid, which has for its base vertices (2,2,0), (2,-2,0), 

(-2,2,0) and (-2,-2,0). The height of the pyramid is 6.  

Method 1: After 3D view has been activated, the students could click on the “pyramid” button 

and it would be requested of them to click on the vertices of the base in 3D view and then 

choose the apex of the pyramid.  

Method 2: The students could also enter commands in the input field:   

A=(2,2,0)  

B=(2,-2,0) 
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C= (-2,2,0) 

D=(-2,-2,0)  

Pyramid[poly1, 6] 

After they have completed this task they were asked to use the “rotate” tool in order to view 

the pyramid from different angles.  

Exercise 4. Sketch a circle with radius 5 which lies on the y-z plane, having the point (0,3,3) 

as its centre.  

Step 1/2. The students were asked to visualise the described circle and then try to sketch it 

on a piece of paper.  

Step 3. Sketching in GeoGebra. It was on the students to decide which of the working methods 

they wanted to use, based on their preference. Roughly half of the students decided on the 

first and the second half on the second method. After they sketched the circle in GeoGebra, 

they were instructed to rotate it to see it from different angles.  

Commands (for those who decided to use this method): 

A=(0,3,3) 

Circle[A,5,x=0] 

Step 4. The following question has been asked and it was requested of them not to consult 

GeoGebra for answers for the time being: 

If we are sitting in a point on z axis high above of the circle, which shape would it 

assume?  

The students were left to visualise and think about it for a while. In both groups approximately 

10% of them answered the question correctly (the correct answer was that it would look like 

a segment), whereas the rest did not know the answer. After this they were asked to use the 

“rotate” tool in order to see in GeoGebra what was the correct answer.  
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Exercise 5. Sketch a cone which has for its base a circle with radius 3, lies on a plane which 

is parallel to the xy plane, whereas the distance from it is 3 and the height of the cone is 5. 

Step 1/2. The students were asked to visualise the described cone and then try to sketch it on 

a piece of paper.  

Step 3. Sketching in GeoGebra. It was left to the students to decide which method to use in 

order to sketch the cone and no instructions regarding a specific method were given. It was 

also left to the students to decide which point should be used as the circle centre. The 

students were instructed to use the rotate tool once they were done with their work in order 

to see the cone from different angles.  

Step 4. The following questions were asked and it was requested of them not to consult 

GeoGebra for answers for the time being: 

1. If we are sitting in a point on z axis high above, how would our cone look like?  

 

The students were left to visualise and think about it for a while. In both groups approximately 

10% of them answered the question correctly (the correct answer was that it would look like 

a circle with a point in the middle), whereas the rest did not know the answer. After this they 

were asked to use the “rotate” tool in order to see in GeoGebra what was the correct answer.  

2. If we were sitting in point (3,0,3) which shape would our cone assume?  

Again the same approach as with the first question has been applied. No students could give 

an answer, correct or not (correct answer was that it would look like an isosceles triangle).  

7.3 Second week 

During the lesson in second week the students worked with wooden objects. Each student 

was given one wooden object to work with. They were first told to take measurements of the 

object and sketch the objects on paper, after what they had to translate the measurements 

into Cartesian coordinates and sketch the object in GeoGebra. 

With regard to the first group subjects 10, 9, 11, 4, 6 and 23 (27%) completed the task two 

times faster than the rest of the subjects and they had no problems with it whatsoever. Other 

subjects had problems with translating the measurements of the wooden objects into 
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Cartesian coordinates. The reason for this could be either not quality mathematics pre-

knowledge or problems with visualisation.  

Second group was much quicker in understanding and applying the learned content, what 

could be explained with the fact that the second group had a break in between lectures before 

the lesson whereas the first group had no breaks and arrived to the class straight from another 

one. Subjects 29, 44, 46, 41, 36, 28 and 29 (32%) have completed the task two times faster 

than the rest of the subjects. Subjects 50 and 35 completed the task three times faster and 

more effective than the rest of the subjects and displayed clear problem formulation, quick 

translation of measurements into Cartesian coordinates as well as dexterous use of GeoGebra 

for sketching their wooden object.  

 

 

 

 

 

 

 

 

 Figure 13. Student's sketch of object 16 
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Figure 14. Another student's sketch of object 16 

Figure 15. Object 16 
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Figure 16. Student's sketch of object 18 

Figure 17. Object 18 
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After sketching wooden objects in GeoGebra, orthogonal sketches of wooden objects the 

students have not worked with before were introduced, containing conventionally front, side 

and top view. The students’ task was to sketch the objects in GeoGebra, using the orthogonal 

sketches. A short explanation was given on what the orthogonal sketches contain and 

definitions of each view, after what it was proceeded to the task.  

Students’ performance on this task has been significantly faster and more effective than their 

performance on the previous task, the reasons for which could be: 1) they gained practice 

and experience during translating measurements of objects they were to sketch in GeoGebra 

into Cartesian coordinates, 2) sketching in GeoGebra and rotating their sketch of the object 

helped with visualisation process which was required for this task as well. One mitigating 

circumstance in this case might have been that the objects were all conceptually similar so 

practice during the first task might have made the second task substantially easier for the 

subjects.  

It has to be noted that the students predominantly used the isometric projection as their 

reference guide, which, given the fact that they have little or no previous experience  

(due to their secondary education) with orthogonal sketches and only used the front, side and 

top view for measurements. Additionally, even those subjects who had difficulties with the 

previous task exhibited more effective task solving in this part of the lesson. Due to the lack 

of time however, some of the subjects did not succeed in completing this task, although the 

greater majority (81.81%) has. Those who have completed their task were given the wooden 

objects for examination which they have been sketching for the purpose of comparison.  
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Figure 19. Orthogonal sketch of object 18 

Figure 18. Orthogonal sketch of object 16 
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7.4 Third week 

Exercises given in third week were that of rotation and reflection in 2D. GeoGebra apps have 

been made and uploaded on the GeoGebraTube, which students could easily access and then 

work with them. All in all there were three exercises for reflection and three for rotation.  

Exercise 1.  

 

In this exercise it was required of the subjects to reflect all points with respect to the line and 

connect them into a polygon. Correct solution could be tested by using the ‘reflect about line’ 

tool. This exercise was intended to be an introductory, easy exercise for other two, the level 

of which was designed according to the scaffolding rule.  

 

 

 

 

 

Figure 20. Reflection exercise 2 
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Exercise 2.  

 

 

The subjects were required to once again reflect the points with respect to the line which 

was in this exercise sketched under a certain angle, which made the exercise a little more 

difficult than the previous one.  

 

 

 

 

 

 

Figure 21. Reflection exercise 2 
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Exercise 3. 

 

 

 

The line in this exercise has once again been drawn under a specific angle but the additional 

difficulty of this exercises lied in the fact that some of the points have been drawn in the 

middle of the grid squares. 

 

 

 

 

 

 

 

Figure 22. Reflection exercise 3 
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Exercise 4.  

 

In this exercise the polygon needed to be rotated 90° clockwise around point G, which was 

the only point labelled. The correct solution could be checked using GeoGebra’s ‘rotate 

around point’ tool. This exercise has been designed once again to serve as an introductory 

exercise, with the other two following in difficulty level according to the scaffolding rule.  

 

 

 

 

 

 

 

 

 

 

Figure 23. Rotation exercise 1 
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Exercise 5.  

 

In this exercise the polygon needed to be rotated 90° clockwise around point A, which was 

the only point labelled. The difference in difficulty with regard to the previous exercise can be 

noted in the increased number of oblique lines, as well as the position of the point around 

which the polygon needed to be rotated.  

 

 

 

 

 

 

 

 

 

Figure 24. Rotation exercise 2 
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Exercise 6.  

 

The given polygon needed to be rotated 90° anticlockwise around point B. There are no 

straight lines in this exercise which is why it has been given to the students after completing 

the first two rotation exercises.  

Certain subjects have completed all tasks within thirty minutes whereas some found it 

difficult to complete them within an hour and thirty minutes. Certain subjects encountered 

technical difficulties what made the task solving run slower. Again there was a noticeable 

difference between first and second group, with the second group completing tasks within 

averagely 25 minutes, which could once again be contributed to the fact that the second 

group had a break between the lessons.  

In the first group, subject 19 completed the task as first in the group, whereas subjects 6, 10, 

11, 2, 23 and 27 solved the tasks faster than the rest of the subjects (27%).  

Figure 25. Rotation exercise 3 
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In the second group, subject 31 completed the task as first in the group. Subject 51 also stood 

out with dexterity and speed of task solving. Subject 37 excelled in the whole group by solving 

all six tasks twice within 30 minutes.  

 

7.5 Fourth week 

 

For classes in last week mathematics problems with emphasis on visualisation have been 

designed, again following the four step method. However, the exercises have been divided 

into two parts, level one (basic) and level two (advanced).  

Exercise 1. Level one: Base length of a right regular square pyramid is 4, whereas the 

height of the pyramid is 8. The base of the pyramid cuts a sphere the diameter of which is 4 

into two equal parts. Sketch the pyramid and the sphere.  

Level two: Sketch the part of the pyramid which is not a part of the sphere. 

Step 1/2: The students were required to first attempt to visualize the given problem and then 

sketch it on a piece of paper. At this point only subject 2 from group one (4,5%) and subjects 

50 and 49 from group two (9%) managed to complete Level two. Subject 50 also pointed out 

that the shape looked like the Eiffel tower, which was the correct answer but what also 

showed that he was able to compare the resulting shape with others in his mind.  

Step 3: Sketching in GeoGebra. Given that they already had plenty of practice with working in 

this software, there were no problems with this except technical ones.  

Step 4: Since Level two task had to be given at the beginning of the exercise in order to avoid 

the students already seeing the answer on the sketch in GeoGebra, in Step 4 it was only left 

to the students to compare their sketches on paper with those in GeoGebra.  
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Exercise 2. Level one: One face of a cube, the length of the edge of which is 2, lies on the 

base of a right circular cylinder, the diameter of which is 4, whereas the height of the 

cylinder is 4. Sketch the cube and the cylinder.  

Level two: A plane runs along the bisector of one of the cube edges. Sketch how the 

intersection of the plane, cylinder and cube looks like.  

Figure 26. Correct sketch of Exercise 1 in GeoGebra  

Figure 27. Correct solution of Level two in Exercise 1 
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Step 1/2: The students were required to first attempt to visualise the given problem and 

then sketch it on a piece of paper. At this point no one managed to complete Level two. 

Step 3: Sketching in GeoGebra.  

Step 4: Since Level two task had to be given at the beginning of the exercise in order to avoid 

the students already seeing the answer on the sketch in GeoGebra, in Step 4 it was only left 

to the students to compare their sketches on paper with those in GeoGebra. Additionally, 

since no one has managed to complete Level two, the subjects have been encouraged to take 

their time inspecting their GeoGebra sketches to see what would have been the correct 

answer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Correct solution of Level two in Exercise 2 
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Figure 30. Sketches on paper of Exercise 2 by three different subjects 

Figure 29. Correct sketch of Exercise 2 in GeoGebra 
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Exercise 3. Level one: Diameter of the base of a right circular cylinder is 4, whereas the 

height of the cylinder is 4 as well. On top of the cylinder lies a right regular square pyramid, 

the length of the edge of the base of which is 2, whereas its height is 3. Sketch the cylinder 

and the pyramid.  

Level two: A plane runs along the bisector of one of the edges of the pyramid base. Sketch 

how the intersection of the plane, pyramid and cylinder looks like.  

Step 1/2: The students were required to first attempt to visualise the given problem and 

then sketch it on a piece of paper. Again no one managed to complete Level two. 

Step 3: Sketching in GeoGebra.  

Step 4: Since Level two task had to be given at the beginning of the exercise in order to avoid 

the students already seeing the answer on the sketch in GeoGebra, in Step 4 it was only left 

to the students to compare their sketches on paper with those in GeoGebra. Additionally, 

since no one has managed to complete Level two, the subjects have been encouraged to take 

their time inspecting their GeoGebra sketches to see what would have been the correct 

answer.  

 

 

 

 

 

 

 

 

 

 

 

 



96 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 32.Sketches on paper of Exercise 3 by two different subjects 

Figure 31. Correct sketch of Exercise 3 in GeoGebra 
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Exercise 4. Level one: Length of one of the edges of the cube is 4. A sphere lies within the 

cube, the diameter of which is also 4. Sketch the cube and the sphere.  

Level two: A plane runs along the diagonal of one of the cube faces. Sketch how the 

intersection of the plane, cube and the sphere looks like.  

Step 1/2: The students were required to first attempt to visualise the given problem and then 

sketch it on a piece of paper. Subjects 19, 4 and 2 from group one (13%) and subjects 35 and 

50 from group two (9%) managed to complete Level two. The reason for this could be that 

thanks to the previous exercises and rotating their GeoGebra sketches the visualisation 

process was easier for some.  

Step 3: Sketching in GeoGebra.  

Step 4: Since Level two task had to be given at the beginning of the exercise in order to avoid 

the students already seeing the answer on the sketch in GeoGebra, in Step 4 it was only left 

to the students to compare their sketches on paper with those in GeoGebra.  

 

 

 

 

 

 

Figure 33. Correct solution of Level two in Exercise 3 
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Figure 35. Correct sketch of Exercise 4 in GeoGebra 

Figure 34. Correct sketch of Level two in Exercise 4 
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Last exercise was not completed due to the lack of time, but it will be outlined in the following 

section. 

Exercise 5. Level one: Length of the edge of a cube is 4. On one of the faces of the cube lies 

the base of a right regular cone. Base diameter of the cone is 4 whereas the height of the cone 

is 2. The cone however lies within the cube. Sketch the cube and the cone.  

Level two: A plane runs along the diagonal of one of the cube faces. Sketch how the 

intersection of the plane, cube and the cone looks like. 

Figure 36. Sketch of Exericse 4 by one of the subjects 
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Figure 37. Correct sketch of Exercise 5 in GeoGebra 

Figure 38. Correct sketch of Level two in Exercise 5 
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8 Results and discussion 

8.1 Employed instruments and tools  

 

For pre-test the Spatial test by Pauline Smith and Chris Whetton (1988) has been used. After 

the completed experimental programme the test has been applied once again, along with a 

questionnaire containing 22 items dealing with possible predictors of highly developed spatial 

skills, using Lickert scale. For the greater part the questionnaire contains items from the 

questionnaire written by Dr. Terry Armstrong  

(http://literacyworks.org/mi/assessment/findyourstrengths.html) whereas some of the 

items have been added, which were tested as predictors for highly developed spatial abilities 

by other researchers. Specifically, Sorby and Baartmans (2000) have conducted a research in 

1993 on the sample of first-year students (418 male and 117 female, 535 in total) who 

enrolled mechanical, civil, environmental, geological, and general engineering, administering 

PSVT:R along with a background questionnaire. From the analyses of the results on the PSVT:R 

and the answers on the background questionnaire the authors have isolated four significant 

predictors of success on the PSVT:R: 1) play as children with construction toys, 2) gender, 3) 

math scores, 4) previous experience in design-related courses like drafting, mechanical 

drawing etc. (Sorby & Baartmans, 2000). It was for this reason that it has been decided to 

include items in the questionnaire which examined these possible predictors. Additionally 

Spatial ability test by Paul Newton and Helen Bristoll (2009) has been administered.   

This research has used GeoGebra as the primary spatial skills training tool with the aim of 

verifying the value of this software for the purpose of spatial skills training. GeoGebra is one 

of the few mathematical software editions which have been translated into Croatian and 

Šuljić (2005) found that GeoGebra has grown in popularity in the Republic of Croatia because, 

among other reasons, it is freeware. As other reasons for this popularity he gives: 1) it is a 

professionally made program, which has won many European software rewards (including 

those for educational software); 2) it has been translated to Croatian; 3) it covers 

mathematical programs for elementary and secondary schools in the Republic of Croatia well; 

4) is able to bring geometry and algebra closer than any other program; 5) entails an intuitive 

algebraic equation input (e.g. (x-3) 2 + (y+2) 2 = 25); 6) it is easy to use for both teachers and 

students; 7) a student can use it since the fifth grade of elementary school until he graduates 

http://literacyworks.org/mi/assessment/findyourstrengths.html
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from secondary school; 8) it has high-quality graphics, suitable especially for classroom 

projections; 9) can easily produce a dynamic drawing on a web page (applet); 10) the 

constructions can be transferred to other presentations or programs, including LaTEX (Šuljić, 

2005). 

8.2 Sample 

 

The experimental group consisted of 35 males (67.3%) and 17 females (32.7%) whereas the 

control group consisted of 33 males (63.5%) and 19 females (36.5%), all studying at the Faculty 

of Science and Education in Mostar, Bosnia and Herzegovina, only with focus on different 

subjects. The experimental group took the experimental programme whereas the control 

group has not been influenced in any way. Pre-test and post-tests were taken by both 

experimental and control group at the approximately the same time.  

 

 

 

 

 

 

Table 6. Research sample 

 

8.3 Variables 

Dependent variables:  

 Students’ success during the experimental programme  

 Students’ results on the spatial abilities pre-test and post-test 

 

Independent variables:  

 Students’ gender 

 

Group Gender Frequency Percent 

Experimental 

M 35 67.3 

F 17 32.7 

Total 52 100.0 

Control 

M 33 63.5 

F 19 36.5 

Total 52 100.0 
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8.4 Hypotheses 

 

General hypothesis: it is possible to enhance spatial abilities via specially developed 

programme to use in Geogebra throughout the span of minimum one month. According to 

previous research enhanced spatial abilities will serve as a foundation for the students for 

success in their studies and also in their work in the future.  

1. Differences between the control and experimental group at initial testing of spatial 

abilities are not statistically significant with regard to any subsample. 

2. Differences between the control and experimental group at final testing of spatial 

abilities are statistically significant.  

3. Differences between initial and final testing of spatial abilities within the control group 

are not statistically significant.  

4. Differences between initial and final testing of spatial abilities within the experimental 

group are statistically significant.  

Auxiliary hypotheses: 

1. There are no statistically significant differences between the genders neither with 

regard to the experimental programme (initial and final testing) nor with regard to the 

control group. 

2. Knowledge gained during high school education does not have a statistically 

significant impact on the differences between the students’ success within the 

experimental group (continued monitoring of advancement during the experimental 

programme as well as initial and final testing).  
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8.5 Results 
 

Test Group N M SD min max 

Initial Smith & Whetton 

Experimental  49 43.20 14.74 12.00 69.00 

Control 44 52.68 8.53 36.00 71.00 

Total 93 47.69 13.04 12.00 71.00 

Final Smith & Whetton 

Experimental  40 55.93 11.42 22.00 76.00 

Control 44 53.36 9.89 37.00 73.00 

Total 84 54.58 10.66 22.00 76.00 

Final Newton & Bristoll 

Experimental  41 30.54 5.07 18.00 40.00 

Control 45 31.00 5.89 13.00 43.00 

Total 86 30.78 5.49 13.00 43.00 

Table 7. Subjects' mean scores on tests 

 

On the pre-test by Smith and Whetton (1988) the experimental group scored a mean of 43.20 

(with worst score being 12 and best score 69) and standard deviation of 14.74 whereas the 

control group scored a mean score of 52.68 (with worst score being 36 and best score being 

71) and standard deviation of 8.53. A noticeable larger standard deviation for the 

experimental group scores on the pre-test should be pointed out.  

On the Smith and Whetton (1988) post-test the experimental group scored a mean of 55.93 

(with worst score being 22 and best score 76) and standard deviation of 11.42 whereas the 

control group scored a mean score of 53.36 (with worst score being 37 and best score being 

73) and standard deviation of 9.89. A less pronounced differences in the standard deviations 

for both groups when compared to each other can be observed.  

On the whole a difference between the mean score on the Smith and Whetton (1988) spatial 

abilities test for the experimental group with regard to average results can be observed: 43.20 

on the pre-test and 55.93 on the post-test, whereas the difference between the average 

scores of the control group is less pronounced: 52.68 on the pre-test and 53.36 on the post-

test.  
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On the Newton and Bristoll (2009) spatial abilities test administered as post-test the 

experimental group scored a mean of 30.54 (with 18 out of maximum 45 as worst score and 

40 as best score) with standard deviation 5.07. On the same test the control group scored an 

average result of 31 (with 13 out of maximum 45 as worst score and 43 as best score) with 

standard deviation 5.89.  

Item Group 
Total 

N M SD 

1. When I was a child I enjoyed playing 
games which included putting 
different pieces together (Lego blocks, 
jigsaw puzzles, 3D models etc). 

Experimental 41 3.68 1.128 

Control 45 3.42 1.323 

Total 86 3.55 1.233 

2. When I was a child I enjoyed solving 
Sudoku, labyrinths and 'connect the 
dots' problems. 

Experimental 41 3.05 1.224 

Control 45 3.20 1.375 

Total 86 3.13 1.300 

3. When I was a child I loved to play 
chess.  

Experimental 41 2.34 1.543 

Control 45 2.91 1.411 

Total 86 2.64 1.494 

4. I was good at science subjects at 
school.  

Experimental 41 3.34 1.039 

Control 45 3.76 1.069 

Total 86 3.56 1.069 

5. I was in scouts when I was a child.  

Experimental 41 1.59 1.204 

Control 45 1.62 1.248 

Total 86 1.60 1.220 

6. When I was a child I spent a lot of 
time outdoors.  

Experimental 41 4.37 .968 

Control 45 4.22 .974 

Total 86 4.29 .969 

7. When I am walking around unfamiliar 
city I can easily retrace my steps back 
to the starting point.  

Experimental 41 3.44 1.074 

Control 45 3.73 1.250 

Total 86 3.59 1.172 

8. I have no problems parking a car (in 
case you are not driving, please leave 
empty).  

Experimental 41 3.85 1.085 

Control 42 4.29 1.019 

Total 83 4.07 1.068 

9. Use of numbers and symbols is easy 
for me.  

Experimental 41 3.63 .968 

Control 45 4.16 1.186 

Total 86 3.91 1.113 

10. Music is very important to me in 
everyday life.  

Experimental 41 4.05 1.117 

Control 45 4.29 1.036 

Total 86 4.17 1.076 

11. I always know where I am with regard 
to where I live.  

Experimental 41 4.02 1.084 

Control 45 4.29 1.141 

Total 86 4.16 1.115 

12. I often develop equations in order to 
describe correspondences or explain 
what I see.  

Experimental 41 2.12 1.187 

Control 45 2.64 1.433 

Total 86 2.40 1.340 
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13. I do not get lost easily and the use of 
maps and landmarks is easy for me.  

Experimental 41 3.49 1.121 

Control 45 3.67 1.261 

Total 86 3.58 1.193 

14. I have a very good sense of pitch, 
tempo and rhythm.  

Experimental 41 3.29 1.289 

Control 45 3.33 1.187 

Total 86 3.31 1.230 

15. Knowing directions is easy for me.  

Experimental 41 3.78 1.107 

Control 45 3.96 1.086 

Total 86 3.87 1.093 

16. I have good balance and eye-hand 
coordination and enjoy sports which 
use a ball.  

Experimental 41 3.76 1.179 

Control 45 4.09 1.145 

Total 86 3.93 1.166 

17. I have the ability to represent what I 
see by drawing or painting.  

Experimental 41 2.41 1.183 

Control 44 2.84 1.238 

Total 85 2.64 1.223 

18. My excellent coordination and 
balance enable me to be very 
successful in activities which demand 
high speed.  

Experimental 41 3.49 1.186 

Control 44 3.61 1.243 

Total 85 3.55 1.210 

19. I like to think about numerical issues 
and examine statistics.  

Experimental 41 2.32 1.331 

Control 45 2.82 1.403 

Total 86 2.58 1.384 

20. My ability to draw is recognised and 
complimented by others.  

Experimental 41 1.83 1.116 

Control 45 2.18 1.267 

Total 86 2.01 1.203 

21. I can remember the tune of a song 
when asked.  

Experimental 41 2.78 1.406 

Control 45 3.07 1.355 

Total 86 2.93 1.379 

22. It is easy for me to visualise things in 
3D.  

Experimental 41 3.41 1.048 

Control 45 3.67 1.066 

Total 86 3.55 1.059 
Table 8. Subjects' answers on individual items in the questionnaire 

 

The aim of this questionnaire was to determine whether there was a statistically significant 

correlation between specific items in the questionnaire and high results on the initial spatial 

abilities test. The questionnaire itself employed Lickert type scale. On the whole the subjects 

both in experimental and in control group answered the lowest average of 1.59 (SD=1.204) 

for experimental and 1.62 (SD=1.248) for control group with total average of 1.60 (SD=1.220) 

for item number 5, “I was in scouts when I was a child”. Second item with lowest average 

answers was item number 20, “My ability to draw is recognised and complimented by others”: 

average of 1.83 (SD=1.116) for experimental and 2.18 (SD=1.267) for the control group, with 
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the total average of 2.01 (SD=1.203). Other observable items on which average answers were 

relatively low were:  

1. Item number 21: “I can remember the tune of a song when asked”. 

Experimental group 2.78 (SD=1.406), control group 3.07 (SD=1.355) and total average 

2.93 (SD=1.379) 

2. Item number 3: “When I was a child I loved to play chess”. 

Experimental group 2.34 (SD=1.543), control group 2.91 (SD=1.411) and total average 

2.64 (SD=1.494) 

3. Item number 17: “I have the ability to represent what I see by drawing or painting”. 

Experimental group 2.41 (SD=1.183), control group 2.84 (SD=1.238) and total average 

2.64 (SD=1.223) 

4. Item number 19: “I like to think about numerical issues and examine statistics”.  

Experimental group 2.32 (SD=1.331), control group 2.82 (SD=1.403) and total average 

2.58 (SD=1.384) 

5. Item number 12: “I often develop equations in order to describe correspondences or 

explain what I see”. 

 Experimental group 2.12 (SD=1.187), control group 2.64 (SD=1.433) and total average 

2.4       (SD=1.34) 

With regard to high average answers, the highest average answer was for item number 6 

(“When I was a child I spent a lot of time outdoors”) with average answer of 4.37 (SD=0.968) 

for experimental, 4.22 (SD=0.974) for control group and total average answer 4.29 

(SD=0.969). Second highest average answer was for item number 10 (“Music is very important 

to me in everyday life”) with average answer of 4.05 (SD=1.117) for experimental, 4.29 

(SD=1.036) for control and total average answer 4.17 (SD=1.076).  

Other observable items on which average answers were relatively high were:  

       1. Item number 11: “I always know where I am with regard to where I live”. 
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Experimental group 4.02 (SD=1.084), control group 4.29 (SD=1.141) and total average 

4.16       (SD=1.115) 

2. Item number 8: “I have no problems parking a car (in case you are not driving, please 

leave empty)” 

Experimental group 3.85 (SD=1.085), control group 4.29 (SD=1.019) and total average 

4.07       (SD=1.068) 

3. Item number 16: “I have good balance and eye-hand coordination and enjoy sports 

which use a ball”. 

Experimental group 3.76 (SD=1.179), control group 4.09 (SD=1.145) and total average 

3.93       (SD=1.166) 

4. Item number 9: “Use of numbers and symbols is easy for me”.  

Experimental group 3.63 (SD=1.968), control group 4.16 (SD=1.186) and total average 

3.91       (SD=1.113) 

5. Item number 15: “Knowing directions is easy for me”. 

Experimental group 3.78 (SD=1.107), control group 3.96 (SD=1.086) and total average 

3.87       (SD=1.093) 

Subjects have also been asked to include the average grade they had in mathematics in high 

school. From the results an almost even distribution between grades two to four is 

observable, with an additional discrepancy in the percentage of subjects with average grade 

five between the experimental and control group (17.1% of subjects in the experimental and 

31.0% of subjects in the control group). On the other hand 29.3% of subjects in the 

experimental group stated their average mathematics high school grade was two whereas 

only 11.9% percent of subjects in the control group were awarded the same grade. Highest 

percentage of subjects in the experimental group were awarded grades two and three 

(29.3%), whereas highest percentage of subjects in the control group were awarded grade 

five (31.0%). Lowest percentage of subjects in the experimental group were awarded grade 

five (17.1%) whereas lowest percentage of subjects in the control group were awarded grade 
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two (11.9%). Total highest percentage of subjects have been awarded grade three (28.9%) 

and lowest total percentage of subjects have been awarded grade two (20.5%).  

Variable Group 
Total 2,00 3,00 4,00 5,00 

N M SD % % % % 

Math 
grade 

Experimental 41 3,29 1,078 29,3% 29,3% 24,4% 17,1% 

Control 42 3,79 1,025 11,9% 28,6% 28,6% 31,0% 

Total 83 3,54 1,074 20,5% 28,9% 26,5% 24,1% 
Table 9. Average grade in mathematics in high school 

8.6 Analyses 
 

Since spatial abilities are one aspect of the general intelligence, t-test for independent 

samples has been run with regard to general intelligence.  

Group N M SD t df p 

Experimental 49 43.204 14.741 
-3.842 78.3* 0.000 

Control 44 52.682 8.526 

                *Correction due to unequal variance 

Table 10. T-test for independent samples with regard to general intelligence 

It can be concluded that the t-test value is greater than the boundary value with p=0.001 

which implies the existence of statistically significant difference between the scores of the 

experimental and control group on the spatial abilities test. 

Due to the obvious higher results with regard to the control group ANCOVA analysis has been 

conducted with intelligence as covariance, in order to make experimental and control group 

equal with regard to the first point which would enable comparison.  

Group N M Me F df p ηp
2 

Experimental 39 55.89 59.159 
54.572 1 0.000 0.406 

Control 44 53.36 50.473 

Me – Estimated mean after controlling initial result in intelligence 
ηp

2 – partial eta squared 
Table 11. ANCOVA results 
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Results of the analysis imply that after initial difference with regard to intelligence there was 

a significant difference between the results of the experimental and control group. However 

no statistically significant differences have been found with regard to gender (F=3.904; df=1; 

p=.052) and between the two groups and gender (F=1.688; df=1; p=.198). 

T-test for dependent samples has also been conducted in order to check differences within 

groups and examine whether there are differences between initial and final testing.  

 

Group Test N M SD t df pt r pr 

Experimental 

Initial Smith & 
Whetton  

39 46.28 11.116 
-9.126 38 .000 .833 .000 

Final Smith & 
Whetton  

39 55.90 11.571 

Control 

Initial Smith & 
Whetton  

44 52.68 8.526 
-1.431 43 .160 .952 .000 

Final Smith & 
Whetton  

44 53.36 9.886 

t,df,pt – paired samples t-test 

r,pr – correlation parameters 
Table 12. T-test for dependent samples 

 

Results show a statistically significant jump in scores with regard to the initial and final testing 

with the experimental group t=-9,126, df=38, p<0,05), whereas the control group did not 

exhibit statistically significant differences between initial and final scores.  

The correlation between individual items on the questionnaire and the initial spatial abilities 

test by Smith and Whetton (1988) is outlined in table.  
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 Item 

Correlation 
with total 

initial Smith & 
Whetton 

spatial test 
score 

Correlation with 
experimental 
group initial 

Smith & 
Whetton spatial 

test score 

Correlation with 
control group 
initial Smith & 

Whetton spatial 
test score 

1. When I was a child I enjoyed playing games which 
included putting different pieces together (Lego 
blocks, jigsaw puzzles, 3D models etc). 

.265* .279 .410* 

2. When I was a child I enjoyed solving Sudoku, 
labyrinths and 'connect the dots' problems. 

.196 .080 .297 

3. When I was a child I loved to play chess. .008 -.187 .176 

4. I was good at science subjects at school. .125 .094 .058 

5. I was in scouts when I was a child. .177 .124 .263 

6. When I was a child I spent a lot of time outdoors.  -.045 .096 -.181 

7. When I am walking around unfamiliar city I can 
easily retrace my steps back to the starting point. 

.172 .204 .078 

8. I have no problems parking a car (in case you are 
not driving, please leave empty).  

.050 .114 -.160 

9. Use of numbers and symbols is easy for me.  .051 .077 -.097 

10. Music is very important to me in everyday life.  .008 .055 -.100 

11. I always know where I am with regard to where I 
live.  

.077 .074 .023 

12. I often develop equations in order to describe 
correspondences or explain what I see. 

.119 .018 .095 

13. I do not get lost easily and the use of maps and 
landmarks is easy for me. 

.152 .153 .151 

14. I have a very good sense of pitch, tempo and 
rhythm. 

-.294* -.410** -.143 

15. Knowing directions is easy for me. .070 .043 .065 

16. I have good balance and eye-hand coordination 
and enjoy sports which use a ball. 

-.042 .068 -.266 

17. I have the ability to represent what I see by 
drawing or painting. 

.000 -.166 .072 

18. My excellent coordination and balance enable me 
to be very successful in activities which demand high 
speed. 

-.066 -.057 -.137 

19. I like to think about numerical issues and examine 
statistics. 

.210 .110 .210 

20. My ability to draw is recognised and 
complimented by others.  

.015 -.114 .021 

21. I can remember the tune of a song when asked. -.256* -.220 -.375* 

22. It is easy for me to visualise things in 3D. .290* .389* .133 

Total questionnaire  .116 .410* .279 

*p<.05, **p<0.01 

Table 13. Correlation between individual questionnaire items and initial spatial test 
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With regard to the total scores on the initial Smith and Whetton (1988) spatial test, the 

following correlations have been found: 

 

1.  Item number 1 (“When I was a child I enjoyed playing games which included putting 

different pieces together (Lego blocks, jigsaw puzzles, 3D models etc)” with positive 

correlation r=0.265 (p<.05) 

 

2. Item number 14 (“I have a very good sense of pitch, tempo and rhythm”) with negative 

correlation r=-0.294 (p<.05) 

 

3. Item number 21 (“I can remember the tune of a song when asked”) with negative 

correlation r=-0.256 (p<.05) 

 

Overall correlation between the questionnaire and the total score on the initial Smith and 

Whetton (1988) spatial test was 0.116, what is statistically insignificant.  

 

With regard to the experimental group specifically, the following correlations between 

individual items in the questionnaire and experimental group score have been found: 

 

1. Item number 14 (“I have a very good sense of pitch, tempo and rhythm.”) with negative 

correlation r=-0.410 (p<.01) 

 

2. Item number 22: (“It is easy for me to visualise things in 3D.”) with positive correlation 

r=0.389 (p<.05) 

 

Overall statistically significant correlation between the questionnaire and the experimental 

group score on the initial Smith and Whetton (1988) spatial test was r=0.410 (p<.05).  

 

With regard to the control group specifically, the following correlations between individual 

items in the questionnaire and experimental group score have been found: 
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1. Item number 1 (“When I was a child I enjoyed playing games which included putting 

different pieces together (Lego blocks, jigsaw puzzles, 3D models etc)”) with positive 

correlation r=0.410 (p<.05).  

 

2. Item number 21 (“I can remember the tune of a song when asked”) with negative 

correlation r=-0.375 (p<.05). 

 

Overall correlation between the questionnaire and the control group score on the initial Smith 

and Whetton (1988) spatial test was 0.279, what is statistically insignificant.  

 

In the following table correlations between tests and average mathematics grade in high 

school have been outlined. 

 

  
Initial Smith & 

Whetton 
Final Smith & 

Whetton  
Final Newton 

& Bristoll  

Initial Smith & 
Whetton  

Total 1   

Kont 1   

Exp 1   

Final Smith & 
Whetton  

Total .795** 1  

Kont .952** 1 .158 

Exp .833** 1 .576** 

Final Newton & 
Bristoll 

Total .394** .395** 1 

Kont .316 .158 1 

Exp .474** .576** 1 

Avg math grade  

Total .168 .093 .272* 

Kont .257 .215 .167 

Exp -.013 .062 .392* 

                        *p<.05, **p<0.01 

Table 14. Correlation between tests and average mathematics grade in high school 

With regard to the total scores, the following correlations have been found between:  

 

1. Initial Smith and Whetton (1988) spatial test and final Smith and Whetton (1988) spatial 

test with r=0.795 (p<0.01) 

 

2. Initial Smith and Whetton (1988) spatial test and final Newton and Bristoll (2009) spatial 

test with r=0.394 (p<0.01) 
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3. Final Smith and Whetton (1988) spatial test and final Newton and Bristoll (2009) spatial 

test with r=0.395 (p<0.01) 

 

4. Final Newton and Bristoll (2009) spatial test and average mathematics grade in high 

school with r=0.272 (p<0.05) 

 

With regard to the experimental group specifically, the following correlations have been 

found between:  

 

1. Initial Smith and Whetton (1988) spatial test and final Smith and Whetton (1988) spatial 

test with r=0.833 (p<0.01) 

2. Initial Smith and Whetton (1988) spatial test and final Newton and Bristoll (2009) spatial 

test with r=0.474 (p<0.01) 

3. Final Smith and Whetton (1988) spatial test and final Newton and Bristoll (2009) spatial 

test with r=0.576 (p<0.01) 

4. Final Newton and Bristoll (2009) spatial test and average mathematics grade in high 

school with r=0.392 (p<0.05) 

With regard to the control group specifically, the following correlation has been found 

between:  

 

1. Initial Smith and Whetton (1988) spatial test and final Smith and Whetton (1988) spatial 

test with r=0.952 (p<0.01) 

 

8.7 Discussion and conclusion 

 
The research which has been described within the scope of this thesis has run across many 

difficulties of both organisational as well as technical nature, which need to be taken into 

consideration when considering the results of the research and comparing them with the 

results of previous, similar researches. Researches which entail a specific experimental 



115 
 

programme running across a longer period of time are complicated to organise in practice 

because the subjects involved need to see specific gains from it and also it is necessary to 

manage to fit the programme into the frames of the subjects’ schedule. Technical details also 

need to be taken into consideration such as materials available in the classroom where the 

programme would be running, which in this case were computers on which GeoGebra 5 was 

installed, as well as the materials provided by the researcher conducting the programme such 

as .ppt presentations, wooden models with which the subjects were going to work etc. Also, 

one of the main concerns of researchers conducting this type of research running across 

several weeks is how many subjects would attend all of the lessons and how many would skip 

some of them, because in cases in which final testing is measuring the effect of the whole 

experimental programme the subjects who skipped some of them cannot be taken into 

consideration and they need to be excluded from the sample, which however can only be 

reviewed at the end of the research. 

As it is often the case in STEM fields, male students are predominant and researchers need to 

take this into consideration when analysing and interpreting the data. In our case the number 

of male subjects roughly exceeded the number of female subjects in both groups (35 male 

and 17 female in experimental and 33 male and 19 female in control group). The fact that 

researches similar to our experimental programme have continually proved gender inequality 

with regard to the results on the spatial tests in favour of men (Eals & Silverman, 1994; Harris, 

1978; Linn & Petersen, 1986; Hoyenga & Hoyenga, 1998) needs to be measured against our 

own findings which indicate no statistically significant differences have been found either with 

regard to gender (F=3.904; df=1; p=.052) or between the experimental and control groups 

and gender  (F=1.688; df=1; p=.198). It can therefore be stated that auxiliary hypothesis 1, i.e. 

‘there are no statistically significant differences between the genders neither with regard to 

the experimental programme (initial and final testing) nor with regard to the control group’ 

has been corroborated. Although these results are inconsistent with the results of previous 

researches with equivalent aims (Sorby et al, 2014; Sorby & Baartmans, 2000) it needs to be 

taken into consideration the small sample size used for our research, in which case clustering 

is probable. Continuing along this line are also differences in scores on the initial Smith and 

Whetton (1988) spatial abilities test between the experimental and control group (average 

score of 43.20 for the experimental and 52.68 for the control group), which discrepancy was 
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corrected with the application of ANCOVA analysis in order to enable the comparison and 

analysis. Average score was 55.89 for the experimental and 53.36 for the control group 

(F=54.572, df=1, p=0.000, ηp
2=0.406). It can be stated therefore with regard to hypothesis 1, 

i.e. ‘differences between the control and experimental group at initial testing of spatial 

abilities are not statistically significant with regard to any subsample’ that the hypothesis has 

been corroborated.  

Similarly, with regard to the background questionnaire and the initial Smith and Whetton 

(1988) test no overall statistically significant correlations have been found (r=.116), although 

correlations have been found with regard to the individual items, i.e. Item number 1 (“When 

I was a child I enjoyed playing games which included putting different pieces together (Lego 

blocks, jigsaw puzzles, 3D models etc)” with positive correlation r=0.265 (p<.05), item number 

14 (“I have a very good sense of pitch, tempo and rhythm”) with negative correlation r=-0.294 

(p<.05) and item number 21 (“I can remember the tune of a song when asked”) with negative 

correlation r=-0.256 (p<.05). Previous researches have in cases included similar 

questionnaires with the aim of isolating possible predictors of highly developed spatial 

abilities (Sorby & Baartmans, 2000) and correlations have been found between 1) play as 

children with construction toys, 2) gender, 3) math scores, 4) previous experience in design-

related courses like drafting, mechanical drawing etc. (Sorby & Baartmans, 2000), what in our 

case has not been confirmed. The correlation between average grade in mathematics in high 

school and the scores on the initial Smith and Whetton spatial abilities test has not been 

significant (r=.168).  

 

Results show that with the experimental group a statistically significant jump in performance 

on the post-test has occurred (t=-9.126, df=38, p<0.05), whereas with regard to the control 

group no statistically significant changes in performance have been noted (t=-1.431, df=43, 

p>0.05). Therefore it can be stated that hypothesis 2, ‘differences between the control and 

experimental group at final testing of spatial abilities are statistically significant’ has been 

corroborated.  

 

Statistically significant correlation between the scores of the experimental group on the initial 

and final Smith and Whetton (1988) spatial abilities test imply a significant jump in 



117 
 

performance, which in such measure we can only attribute to the effect of the experimental 

programme (r=0.833; p<0.01). It can therefore be stated that hypothesis 4, i.e. ‘differences 

between initial and final testing of spatial abilities within the experimental group are 

statistically significant’ has been corroborated. Statistically significant correlation between 

the scores of the control group on the initial and final Smith and Whetton (1988) test has also 

been found (r=0.952; p<0.01). Although the difference in their average scores is not as large 

as that of the experimental group, this can perhaps be explained through the training effect. 

However, it has been empirically proved that it is not possible to create such large differences 

in scores by employing the test training method (Zarevski, 2000). It can therefore be stated 

that hypothesis 3 ‘differences between initial and final testing of spatial abilities within the 

control group are not statistically significant’ has been only partially corroborated.  

Statistically significant correlation has also been found between the scores of the 

experimental group on the initial Smith and Whetton (1988) and final Newton and Bristoll 

(2009) spatial test (r=0.474; p<0.01), as well as between the final Smith and Whetton (1988) 

and final Newton and Bristoll (2009) test (r=0.576; p<0.01), which can also be explained 

through the effect of the training programme. It is interesting to note that statistically 

significant correlations between the average mathematics grade in high school and any scores 

of any of the two groups has been found between the total score on the final Newton and 

Bristoll (2009) spatial test and average mathematics grade (r=0.272; p<0.05) and between the 

score of the experimental group specifically (r=0.392; p<0.05), which however can be 

disregarded since taking into consideration scores on the final test is pointless at best. It can 

therefore be stated that auxiliary hypothesis 2, i.e. ‘knowledge gained during high school 

education does not have a statistically significant impact on the differences between the 

students’ success within the experimental group’ has not been corroborated.  

As a research with a very small sample and in conditions in which technical and organisational 

difficulties needed to be abridged, it can be pointed out that the results suggest there is a 

fertile ground for a similar research on a larger sample and running across a longer period of 

time. Results have showed that the developed experimental programme, even in the 

conditions in which it has been run, harbours potential for expansion and further application. 

Even if we take into consideration that the obtained results imply that training effect has 

taken place, the findings suggest there is a lot of room for spatial abilities training using 
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GeoGebra 5 as a tool within a short span of time and without employing complex techniques 

or tasks which the subjects might find discouraging. The exercises employed in the developed 

experimental programme have been well received, the mathematical problems presented 

were on the appropriate level of difficulty and GeoGebra itself offered tools which enabled 

them to understand the difficulties they had with previous tasks, as well as learn from the 

experience. The rotate tool has proved to be highly useful, as well as different methods of 

sketching which the software offers, so that each individual can choose which method to 

employ in order to solve the problem according to his or her preferences and inclinations. The 

level of difficulty of the problems presented can easily be adjusted by adding more complex 

problems in case the subjects show more aptitude at solving them but also because the 

problems have been created and presented according to the scaffolding rule in case the 

subjects start showing increased difficulties in solving the more complex ones they can easily 

be removed from the programme, which in general should not affect the effect of the 

experimental programme.  

The results obtained in this research need to be viewed through the prism of the conditions 

it has been run in, take into consideration the small size of the sample, the proportions 

between the number of male and female subjects and also the time period throughout which 

it has been running. With all this taken into consideration, along with the obtained results, it 

can concluded that with the expansion of the experimental programme, larger sample and 

across a longer period of time only better results can be expected.  
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10 Appendix 1 – Questionnaire  
 

UPITNIK 

Ime i prezime 

Spol 

Dob 

Fakultet/smjer 

Prosječna ocjena iz matematike u srednjoj školi 

Poštovani, pred Vama je upitnik s nizom tvrdnji. Molimo Vas da za svaku od njih procijenite u kojoj 

mjeri se odnosi na Vas, pri čemu brojevi 1-5 znače slijedeće:  

1-uopće se ne odnosi na mene 
2-uglavnom se odnosi na mene 
3-niti se odnosi, niti se ne odnosi na mene 
4-uglavnom se odnosi na mene 
5-u potpunosti se odnosi na mene 
 

1. U djetinjstvu sam volio/la se igrati igara koje uključuju slaganje 
manjih elemenata u cjelinu (npr. Lego-kocke, puzzle, 3D makete i 
sl.) 

1 2 3 4 5 

2. U djetinjstvu sam volio/la riješavati Sudoku, labirinte i „spoji 
točkice“. 

1 2 3 4 5 

3. U djetinjstvu sam volio-la igrati šah. 1 2 3 4 5 

4. U školi sam bio-la dobar/dobra u znanstvenim predmetima. 1 2 3 4 5 

5. U djetinjstvu sam bio-la u izviđačima. 1 2 3 4 5 

6. U djetinjstvu sam puno vremena provodio/la na otvorenom, u 
prirodi. 

1 2 3 4 5 

7. U situaciji kada po prvi put šetam nepoznatim gradom lako se 
uspijem vratiti na početnu točku. 

1 2 3 4 5 

8. Lako parkiram automobil (ukoliko niste vozač, molimo ostaviti 
prazno). 

1 2 3 4 5 

9. Upotreba brojeva i simbola je laka za mene. 1 2 3 4 5 

10. Glazba mi je važna u svakodnevnom životu. 1 2 3 4 5 

11. Uvijek znam gdje se nalazim u odnosu na mjesto gdje živim. 1 2 3 4 5 

12. Često smišljam jednadžbe kako bih opisao/la povezanosti ili 
objasnio/la ono što vidim. 

1 2 3 4 5 

13. Ne mogu se lako izgubiti i lako se orijentiram prema kartama i 
orijentirima u prostoru. 

1 2 3 4 5 

14. Imam dobar osjećaj za visinu tona, tempo i ritam. 1 2 3 4 5 
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15. Lako se orijentiram u prostoru. 1 2 3 4 5 

16. Imam dobru ravnotežu i koordinaciju između oka i ruke te uživam 
igrati sportove sa loptom. 

1 2 3 4 5 

17. Imam sposobnost prikazati ono što vidim crtanjem ili slikanjem. 1 2 3 4 5 

18. Moja izvanredna koordinacija i ravnoteža mi omogućuju da budem 
što uspješniji/la u aktivnostima koje zahtijevaju veliku brzinu. 

1 2 3 4 5 

19. Volim razmišljati o numeričkim problemima i proučavati statistiku. 1 2 3 4 5 

20. Moja sposobnost crtanja je prepoznata i cijenjena od strane drugih. 1 2 3 4 5 

21. Mogu reproducirati melodiju pjesme na zahtjev. 1 2 3 4 5 

22. Lako mi je predočiti si stvari trodimenzionalno. 1 2 3 4 5 
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12 Povzetek 
 

Razvoj in validacija kurikuluma za prostorsko usposabljanje z uporabo programske opreme 
za dinamično geometrijo na nivoju univerzitetnega izobraževanja 

Prostorske sposobnosti, ki jih Linn in Petersen opisujeta kot "spretnost za zastopanje, 
preoblikovanje, ustvarjanje in priklic simboličnih nejezikovnih informacij" (Linn & Petersen, 
1985), se kot take ne poučujejo v šolah. Prepušča se jih naravnemu razvoju in s pomočjo 
nekaterih dejavnosti v otroštvu, ki so se pokazale, da so prediktorji zelo razvitih prostorskih 
sposobnosti (Sorby & Baartmans, 2000). Kljub temu je bil pomen visoko razvitih sposobnosti 
študentov STEM (znanosti, tehnologije, inženiringa in matematike) znanstveno dokazan (npr. 
Gohm, Humphreys, & Yao, 1998; Humphreys, Lubinski, & Yao, 1993; Lohman, 1988, 1994a, 
1994b; Smith, 1964), kar neposredno nakazuje, da lahko prostorske sposobnosti pomembno 
vplivajo na uspeh ne le študija predmetov STEM, temveč tudi na uspeh v STEM karieri. 

Skozi leta so raziskovalci prepoznali vrednost in povezavo med uspešnostjo na področjih STEM 
z visoko razvitimi prostorskimi sposobnostmi. Zato so z namenom pomagati študentom STEM 
razviti njihove prostorske sposobnosti, poskušali razviti vaje kot tudi celotne eksperimentalne 
programe za izboljšanje prostorskih sposobnosti (Sorby & Baartmans, 2000; Martín-Dorta, 
Saorín & Contero, 2008; Güven & Kosa, 2008). Njihova uspešnost je bila potrjena s pozitivno 
korelacijo med prostorskimi predtesti in potesti. V disertaciji je v nadaljevanju predstavljen 
novo razvit eksperimentalni program za izboljšanje prostorskih sposobnosti. 

Za predtest je bil uporabljen prostorski test Pauline Smith in Chrisa Whettona (Smith & 
Whetton, 1988). Po končanem eksperimentalnem programu je bil test ponovno uporabljen, 
skupaj z vprašalnikom, ki je vseboval 22 trditev, ki obravnavajo možne prediktorje visoko 
razvite prostorske spretnosti z uporabo Likertove lestvice. Vprašalnik v glavnem vsebuje 
elemente iz vprašalnika, ki ga je napisal dr. Terry Armstrong, medtem ko so bile dodane 
nekatere trditve, ki so jih drugi raziskovalci preizkusili kot prediktorje za visoko razvite 
prostorske sposobnosti, skupaj z nekaterimi trditvami, ki sta jih Sorby in Baartmans (2000) 
označila kot visoko razvite prediktorje prostorskih sposobnosti. Poleg omenjenih vprašanj so 
bila vključena v vprašalnik vprašanja o starosti, spolu in povprečni oceni matematike v srednji 
šoli. Poleg tega sta bila opravljena še preizkus prostorskih sposobnosti Newton in Bristoll 
(2009).  

Glavna hipoteza naše raziskave je bila: „prostorske sposobnosti je mogoče izboljšati s posebej 
razvitim programom z uporabo računalniškega programa Geogebra v obdobju najmanj enega 
meseca. Glede na prejšnje raziskave bodo izboljšane prostorske sposobnosti študentom 
predstavljale temelj za uspeh pri njihovem študiju in tudi v prihodnosti. " Pomožne hipoteze 
so bile: 1) Med spoloma ni statistično pomembnih razlik glede na eksperimentalni program 
(začetno in končno testiranje),  niti ni razlik glede na kontrolno skupino; 2) Znanje, pridobljeno 
med srednješolskim izobraževanjem, nima statistično pomembnega vpliv na razlike med 
uspešnostjo študentov v eksperimentalni skupini (stalno spremljanje napredovanja med 
eksperimentalnim programom ter začetno in končno testiranje). 
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V naši raziskavi je bil uporabljen računalniški program GeoGebra kot glavno orodje za 
razvijanje prostorskih veščin. Eksperimentalno skupino je sestavljalo 35 moških (67,3%) in 17 
žensk (32,7%), medtem ko je bilo v kontrolni skupini 33 moških (63,5%) in 19 žensk (36,5%). 
Vsi udeleženci so študirali na Fakulteti za naravoslovje in izobraževanje v Mostarju, Bosna in 
Hercegovina, s tem da so obiskovali različne študijske programe. Eksperimentalna skupina se 
je udeležila eksperimentalnega programa, medtem ko se je kontrolna skupina udeleževala 
običajnega študijskega procesa. Predtest in potest  sta bila izvedena skoraj istočasno v 
eksperimentalni in kontrolni skupini. Za statistično analizo smo za odvisne spremenljivke 
določili uspeh študentov med eksperimentalnim programom in rezultate študentov glede 
prostorske sposobnosti v pred in potestu, neodvisna spremenljivka je bila spol udeležencev. 

Za eksperimentalno skupino, ki je bila razdeljena v dve enaki skupini, je bil zasnovan 
eksperimentalni program s predvidenim trajanjem štirih tednov. Vnaprej je bilo odločeno, da 
poskusne skupine ne smejo biti večje od 20 do 25 študentov, da bi tako učitelj lahko 
nadzoroval pravilno izvedbo vseh korakov eksperimentalnega programa. Dodatno smo se 
odločili, da bo v eksperimentalnem programu sodelovalo največ 60 študentov, vendar ne 
manj kot 35 študentov. Razlog za tako majhen vzorec je, da programa raziskovalka ne bi samo 
predavala in pregledala študentske izdelke po zaključku vsake vaje, temveč morajo 
predavanja slediti določenim korakom: 1) študent mora vizualizirati dani problem, 2) študent 
ga mora skicirati s pomočjo metode pisala in papirja, 3) študent modelira problem v GeoGebri 
in 4) študentje izvedejo sami reševanje dodatne problemov in individualno analizo podobnosti 
in razlik med računalniškimi in papirnatimi skicami za napredovanje njihovih prostorskih 
sposobnosti. Cilj teh štirih korakov je bil, da študentje najprej ustvarijo miselno podobo 
danega problema, skicirajo svojo miselno podobo s pomočjo pisala in papirja, šele nato pa s 
pomočjo programske opreme modelirajo dani probem, tako da lahko na koncu primerjajo 
tisto, kar so pred tem vizualizirali, s sliko, ki so jo dobili z računalniškim programom GeoGebra.  

Kontrolna skupina je bila skupina študentov v prvem letniku in je študirala na isti univerzi kot 
eksperimentalna skupina, vendar se niso udeležili eksperimentalnega programa. Kontrolna 
skupina je nadaljevala s svojimi običajnimi dejavnostmi in ni bila podvržena kakršnemu koli 
vplivu raziskave. Na kratko, oba študenta, razvrščena v eksperimentalni in v kontrolni skupini, 
ki sta se učila na isti univerzi, sta bila iste starosti in sta prišla približno z enakim znanjem iz 
srednjih šol. Edina razlika med njima je, da jih je polovica sodelovala v eksperimentalnem 
programu, druga polovica pa ne. 

V prvem tednu eksperimentalnega programa so se študentje uvajali v delo s računalniškim 
programom GeoGebra 5, tj. učenje uporabe 2D in 3D pogleda, funkcij ukaznega polja in 
sintakse. Po tem, ko so se študenti seznanili z osnovnimi ukazi v GeoGebri, je sledila 
vizualizacija in nato skiciranje geometrijskih predmetov, kar je služilo kot priložnost za 
uporabo osnovnega znanja, ki so ga pridobili v tem uvodnem predavanju. 

V drugem tednu eksperimentalnega programa so študenti delali z lesenimi predmeti. Vsak 
študent je dobil en lesen predmet, s katerim je delal. Najprej so dobili navodilo, da opravijo 
meritve predmeta in ga skicirajo na papir, potem pa morajo meritve prevesti v kartezične 
koordinate in objekt modelirati v GeoGebri. Po modeliranju lesenih predmetov v GeoGebri so 
bile predstavljene ortogonalne skice lesenih predmetov, s katerimi študentje še niso delali in 
so vsebovale sprednji, stranski in zgornji pogled. Naloga študentov je bila te predmete 
modelirati v GeoGebri. Podana je bila kratka razlaga o tem, kaj vsebujejo ortogonalne skice in 
opredelitve vsakega pogleda. Po razlagi so študentje nadaljevali z nalogo. Študentje so pri tej 
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nalogi bili bistveno hitrejši in učinkovitejši kot pri prejšnji nalogi, razlogi za to bi lahko bili: 1) 
pridobivali so izkušnje med prevajanjem meritev predmetov v kartezične koordinate, ki naj bi 
jih modelirali v GeoGebri, 2) modeliranje v GeoGebri in vrtenje njihovega modela predmeta 
je pomagalo pri postopku vizualizacije, ki je bil potreben tudi za to nalogo. Ena od olajševalnih 
okoliščin je lahko tudi, da so bili predmeti konceptualno podobni, zato bi lahko vaja za prvo 
nalogo bistveno olajšala študentom pri reševanju druge naloge. 

V tretjem tednu eksperimentalnega programa so bile vaje iz vrtenja in zrcaljenja v 2D. 
Geogebra apleti so bili pripravljeni in naloženi na GeoGebraTube, do katerih so študenti lahko 
dostopali in z njimi delali. Vse skupaj so bile tri vaje za zrcaljenje in tri za vrtenje. V vajah 
zrcaljenja je bilo od študentov zahtevano, da zrcalijo vse točke glede na črto in jih povežejo v 
poligon. Pravilno rešitev so lahko preverili v Geogebri z orodjem 'zrcali preko točke'. Pri vajah 
iz vrtenja je bilo potrebno vrteti dani poligon za določen kot okrog dane točko, ki je bila edina 
označena točka. Pravilno rešitev je bilo mogoče preveriti v GeoGebri z orodjem 'vrti okoli 
točke'. Nekateri študentje so vse naloge opravili v tridesetih minutah, nekateri pa so jih težko 
opravili v eni uri in trideset minutah. Nekateri študenti so imeli tehnične težave, zaradi česar 
je reševanje nalog potekalo počasneje. 

Za zadnji teden eksperimentalnega programa so bile zasnovane matematične naloge s 
poudarkom na vizualizaciji, spet po štiristopenjski metodi. Vaje smo razdelili na dva dela, prvi 
nivo (osnovni) in drugi nivo (napredni). Za vsako matematično nalogo so morali študenti 
najprej vizualizirati problem (prvi korak) in ga narisati na papir (drugi korak), nato so ga 
modelirali v GeoGebri (tretji korak) in nazadnje primerjati svojo začetno skico na papirju s 
tisto, ki je bila modelirana v GeoGebri (četrti korak). Naloga druge stopnje je vključevala 
dodatno nalogo, ki je bila namenjena študentom, ki so že zaključili naloge osnovne ravni. 

Na predtestu Smith in Whetton (1988) je eksperimentalna skupina dosegla povprečje 43,20 
(najslabši rezultat je bil 12 in najboljši rezultat 69) in standardni odklon 14,74, medtem ko je 
kontrolna skupina dosegla povprečno oceno 52,68 (z najslabšim rezultatom 36, najboljši 
rezultat pa 71) in standardni odklon 8,53. Treba je opozoriti na opazno večje standardno 
odstopanje za rezultate eksperimentalne skupine na predtestu. Na potestu Smith in Whetton 
(1988) je eksperimentalna skupina dosegla povprečno vrednost 55,93 (najslabši rezultat 22 in 
najboljši rezultat 76) in standardni odklon 11,42, kontrolna skupina pa povprečno oceno 53,36 
(najslabši rezultat je bil 37 in najboljši rezultat 73), standardni odklon pa 9,89. Opazimo manj 
izrazite razlike v standardnih odklonih v medsebojni primerjavi. V preskusu prostorskih 
sposobnosti (Newton in Bristoll, 2009), ki je bil opravljen kot potest, je eksperimentalna 
skupina dosegla povprečno vrednost 30,54 (z 18 od največ 45 kot najslabši rezultat in 40 kot 
najboljši rezultat) s standardnim odklonom 5,07. Na istem testu je kontrolna skupina dosegla 
povprečni rezultat 31 (13 od največ 45 kot najslabši rezultat in 43 kot najboljši rezultat) s 
standardnim odklonom 5,89. 

Raziskave, podobne našemu eksperimentalnemu programu, nenehno dokazujejo neenakost 
med spoloma glede na rezultate prostorskih testov v korist moških (Eals & Silverman, 1994; 
Harris, 1978; Linn & Petersen, 1986; Hoyenga & Hoyenga, 1998). Naše ugotovitve kažejo, da 
ni bilo statistično pomembnih razlik bodisi glede na spol (F = 3.904; df = 1; p = .052) bodisi 
med eksperimentalno in kontrolno skupino ter spolom (F = 1.688; df = 1; p = .198). Zato lahko 
trdimo, da je bila pomožna hipoteza 1, tj. „Ni statistično pomembnih razlik med spoloma niti 
glede eksperimentalnega programa (začetno in končno testiranje) niti glede kontrolne 
skupine“, potrjena. Čeprav ti rezultati niso v skladu z rezultati prejšnjih raziskav z enakimi cilji 
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(Sorby in sod., 2014; Sorby & Baartmans, 2000), je treba upoštevati majhno velikost vzorca, 
uporabljeno za naše raziskave, saj je v tem primeru verjetno grozdenje. 

V to smer se nadaljujejo tudi razlike v ocenah na predtestu prostorskih sposobnosti (Smith in 
Whetton, 1988) med eksperimentalno in kontrolno skupino (povprečna ocena 43,20 za 
eksperimentalno in 52,68 za kontrolno skupino), kjer je bilo odstopanje odpravljeno z analizo 
ANCOVA, da bi omogočili primerjavo in analizo. Povprečna ocena je bila 55,89 za 
eksperimentalno in 53,36 za kontrolno skupino (F = 54,572, df = 1, p = 0,000, ηp2 = 0,406). V 
zvezi s hipotezo 1 je torej mogoče trditi, da „razlike med kontrolno in eksperimentalno 
skupino pri začetnem preskušanju prostorskih sposobnosti niso statistično pomembne za 
kateri koli podvzorec“, zato je bila hipoteza potrjena. 

Podobno, v zvezi z vprašalnikom o predhodnih izkušnjah in predtestom Smith in Whetton 
(1988) niso bile ugotovljene splošne statistično pomembne korelacije (r = .116), čeprav so bile 
ugotovljene korelacije glede na posamezne postavke, trditev 1: "V otroštvu sem užival v 
igranju iger, ki so vključevale sestavljanje različnih kosov (Lego bloki, sestavljanke, 3D modeli 
itd.)" s pozitivno korelacijo r = 0,265 (p <.05);  trditev št. 14: "zelo imam dober občutek za ton, 
tempo in ritem ”) z negativno korelacijo r = -0,294 (p <.05) in trditev 21: " Če me kdo vpraša, 
se spomnim melodije skladbe " z negativno korelacijo r = -0,256 (p <.05). Prejšnje raziskave so 
vključevale podobne vprašalnike z namenom izoliranja možnih prediktorjev visoko razvitih 
prostorskih sposobnosti (Sorby & Baartmans, 2000), kjer so bile ugotovljene korelacije med 
1) igranjem otrok z konstrukcijskimi igračami, 2) spolom , 3) matematičnimi ocenami, 4) 
prejšnje izkušnje s tečajev, povezanih z oblikovanjem, kot so skiciranje, strojno risanje, itd., 
kar v našem primeru ni bilo potrjeno. Povezava med povprečno oceno matematike v srednji 
šoli in rezultati na začetnem testu prostorskih sposobnosti Smith in Whetton ni bila 
signifikantna (r = .168). 

Rezultati kažejo, da je pri eksperimentalni skupini prišlo do statistično pomembnega skoka 
zmogljivosti na potestu (t = -9.126, df = 38, p <0,05), medtem ko v zvezi s kontrolno skupino 
statistično pomembnih sprememb v uspešnosti ni bilo opaziti (t = -1.431, df = 43, p> 0,05). 
Zato lahko trdimo, da je bila hipoteza 2, „razlike med kontrolno in eksperimentalno skupino 
pri končnem preskušanju prostorskih sposobnosti so statistično pomembne“, potrjena. 

Statistično značilna korelacija med točkami eksperimentalne skupine na začetnem in 
končnem preskusu prostorskih sposobnosti Smith in Whetton  (1988) pomeni znaten skok v 
uspešnosti, ki ga v takšnem merilu lahko pripišemo le učinku eksperimentalnega programa (r 
= 0,833 ; p <0,01). Zato lahko trdimo, da je bila potrjena hipoteza 4, to je „razlike med začetnim 
in končnim preskušanjem prostorskih sposobnosti v eksperimentalni skupini so statistično 
pomembne“. Ugotovljena je bila tudi statistično pomembna povezava med rezultati 
kontrolne skupine na začetnem in končnem testu Smith in Whetton (1988) (r = 0,952; p 
<0,01). Čeprav razlika v njihovih povprečnih ocenah ni tako velika kot pri poskusni skupini, je 
to mogoče razložiti z učinkom treninga. Vendar pa je empirično dokazano, da ni mogoče 
ustvariti tako velikih razlik v rezultatih z uporabo metode testnega treninga (Zarevski, 2000). 
Zato lahko trdimo, da je hipoteza 3, „razlike med začetnim in končnim preskušanjem 
prostorskih sposobnosti v kontrolni skupini statistično nepomembna“, le delno potrjena. 

Ugotovljena je bila tudi statistično pomembna korelacija med rezultati eksperimentalne 
skupine na začetnem testu Smith in Whetton (1988) ter končnem prostorskem testu Newtona 
in Bristola (2009) (r = 0,474; p <0,01) ter med končnim testom Smith in Whetton (1988) ter 
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končnim testom Newton in Bristol (2009) (r = 0,576; p <0,01), kar je mogoče razložiti tudi z 
učinkom eksperimentalnega programa. Zanimivo je, da smo med skupno oceno na končnem 
prostorskem preizkusu Newtona in Bristoll (2009) in povprečno oceno matematike našli 
statistično pomembne korelacije med povprečno oceno matematike v srednji šoli in vsemi 
rezultati katere koli od obeh skupin. (r = 0,272; p <0,05) in posebej med oceno 
eksperimentalne skupine (r = 0,392; p <0,05), ki pa je ni mogoče upoštevati, saj je upoštevanje 
rezultatov na končnem testu v najboljšem primeru nesmiselno. Zato lahko trdimo, da 
pomožna hipoteza 2, „znanje, pridobljeno med srednješolskim izobraževanjem, nima 
statistično pomembnega vpliva na razlike med uspešnostjo učencev v eksperimentalni 
skupini“, ni bilo potrjeno. 

Raziskava, ki je bila opisana v okviru te disertacije, je naletela na številne težave tako 
organizacijske kot tehnične narave, ki jih je treba upoštevati pri preučevanju rezultatov 
raziskave in jih primerjati z rezultati prejšnjih podobnih raziskav. Raziskave, ki vključujejo 
določen eksperimentalni program, ki se izvaja v daljšem časovnem obdobju, je v praksi 
zapleteno organizirati, ker morajo udeleženci v tem opaziti korist, poleg tega pa je potrebno 
zagotoviti, da se program prilagodi okvirom predmeta pri katerem gostujejo. Upoštevati je 
potrebno tudi tehnične podrobnosti, na primer učna sredstva, ki so na voljo v učilnici, v kateri 
se program izvaja, to so bili v tem primeru računalniki, na katerih je nameščen GeoGebra 5, 
in gradivo, ki ga je zagotovil raziskovalec, ki je vodil program, kot so  prosojnice, leseni modeli, 
s katerimi so študenti delali, itd. Ena izmed glavnih skrbi raziskovalcev, ki izvajajo tovrstno 
raziskovanje učinkov daljših programov, je, koliko študentov se je udeležilo vseh lekcij in 
koliko jih je preskočilo katero od njih. V raziskavah, kjer končno testiranje meri učinek 
celotnega eksperimentalnega programa, preiskovancev, ki se niso udeležili vseh lekcij, ni 
mogoče upoštevati in jih je treba izključiti iz vzorca, kar pa je mogoče ugotoviti le na koncu 
raziskave. 

Vaje, razvite in uporabljene v  eksperimentalnem programu, so bile dobro sprejete, 
predstavljeni matematični problemi so bili na ustrezni stopnji zahtevnosti, GeoGebra pa je 
sama ponudila orodja, ki so študentom omogočala razumevanje problemov, ki so jih imeli pri 
predhodnih nalogah, kot tudi tudi učenje iz izkušenj. Orodje za vrtenje se je izkazalo za zelo 
uporabno, pa tudi različni načini modeliranja, ki jih programska oprema ponuja, tako da je 
lahko  vsak posameznik izbral, katero metodo bo uporabil za reševanje nalog glede na svoje 
želje in vzgibe. Stopnjo zahtevnosti predstavljenih nalog je mogoče enostavno prilagoditi z 
dodajanjem bolj zapletenih problemov, če preiskovanci pokažejo več sposobnosti pri 
reševanju in odstranjevanjem problemov iz nalog, če imajo preiskovanci težave pri reševanju 
bolj zapletenih nalog, kar pa na splošno ne bi smelo vplivati na učinek eksperimentalnega 
programa. 

Ključne besede: eksperimentalni program, GeoGebra, izboljšanje prostorskih sposobnosti, 
prostorske sposobnosti. 

 


