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Giant electrocaloric response in 
smectic liquid crystals with direct 
smectic-isotropic transition
Eva Klemenčič1, Maja Trček2, Zdravko Kutnjak   2,3 & Samo Kralj   1,2

Electrocaloric materials have become a viable technology for solid state heat management applications. 
We demonstrate both theoretically and experimentally that liquid crystals (LCs) can be exploited as 
efficient electrocaloric materials. Numerical and experimental investigations determine the conditions 
under which the strongest electrocaloric effect (ECE) responses are expected in LCs. Specifically, we 
show that a large ECE can be expected at the isotropic-nematic and in particular at the isotropic-smectic 
A phase transition. In our theoretical study, LC ordering is modelled using a Landau – de Gennes - 
Ginzburg mesoscopic approach. The simulation results are in qualitative agreement with our high 
precision electrocaloric measurements conducted on 8CB and 12CB liquid crystals. In the latter, we 
obtained ΔTEC ~ 6.5 K, corresponding to the largest response measured so far in LCs. The fluid property 
of LC electrocaloric heat cooling elements could lead to the development of devices with a higher 
coefficient of performance and thus better cooling power yield per mass of the ECE-based device.

The electrocaloric effect1,2 is related to a reversible change in the temperature ΔTEC of a material upon switching 
an electric field on or off under adiabatic conditions. The switching process is fast enough so that within it, negli-
gible heat is exchanged between the electrocaloric material and the surrounding thermal bath. Studies of various 
ferroelectric materials have revealed anomalously giant ECE responses3–14. These indicate that ECE has potential 
for numerous applications, particularly in heating and cooling or heat waste recovery devices6,15–18. These are 
expected to provide an efficient alternative to applications based on mechanical vapour compression cycle, ther-
moelectric, or other caloric effects. ECE based devices have potential for miniaturization that can be exploited 
to develop efficient cooling mechanisms in computer devices. Furthermore, in contrast to classical cooling tech-
nologies that rely on environmentally dangerous gases, ECE cooling devices will be environmentally friendlier.

In order to develop commercially competitive ECE-based applications one needs to find adequate electroca-
loric (EC) materials that experience sufficient electrocaloric temperature responses, of the order of Δ ∼T 10KEC , 
for moderate changes in an external electric field E. Note that this difference could be further enhanced by an 
order of magnitude by using active regenerator approaches19. For this purpose, one needs EC material exhibiting 
a relatively large change in entropy on varying E. In particular, this could be realized near a symmetry breaking 
order-disorder phase transition in which an order parameter field spontaneously appears in the lower symmetry 
phase. Recent experiments suggest that the EC response near a first order phase transition is proportional with 
the latent heat L released or adsorbed. Therefore, materials exhibiting relatively large values of L are desirable. 
Furthermore, the phase transition temperature should increase with increasing E. In such a way one could trigger 
ordering on increasing E starting from a disordered state. Recent experimental studies20–25 reveal that liquid crys-
tals (LCs) may be appropriate for this purpose.

LC phases and structures are formed by relatively weakly interacting anisotropic molecules26. In general, their 
phases exhibit long range orientational, and in some cases, (quasi) long range translational ordering. They display 
a rich diversity of phases and structures, several of which are stable at room temperatures, in which entropic 
interactions play a significant role. LCs combine an unique combination of order, liquid character and softness. 
In addition, several LC phases and structures possess a relatively strong dielectric anisotropy or permanent elec-
trical dipoles. Softness refers to the ability of LCs to yield a strong macroscopic response in ordering, even to 
weak external stimuli. This property is inherent in LCs because most of their phases or structures are reached 
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via a continuous symmetry breaking phase transition. Note that the order parameter field of any continuous 
breaking phase transition generally consists of two qualitatively different components: the amplitude field and the 
symmetry breaking (also commonly referred to as the gauge) field. The amplitude field determines the degree of 
established ordering and equals zero in the higher symmetry phase. The gauge field reveals the symmetry break-
ing choice in the lower symmetry phase. The gauge field exhibits symmetry restoring Goldstone excitations which 
endow LCs with softness26.

In our study, we consider thermotropic n-alcyl cyanobiphenyl (nCB) LCs consisting of rod-like molecules 
exhibiting positive dielectric anisotropy Δε. Of interest is nematic (N) and smectic A (SmA) LC ordering. The 
uniaxial nematic phase is the simplest LC phase, possessing only orientational ordering. A local orientation is 
commonly determined at the mesoscopic scale by the nematic director field n, corresponding to the gauge field 
component of the nematic order parameter. It exhibits head-to-tail invariance (i.e., states ±n  are physically 
equivalent). In bulk equilibrium nematic long range ordering is spatially homogeneous, where n is aligned along 
a single symmetry breaking direction. In the SmA phase, additional translational ordering appears. In bulk equi-
librium, this consists of parallel stacks of equidistant smectic layers, where n  is aligned along the layer surface 
normal. Due to effectively two-dimensional layer ordering, the SmA phase exhibits quasi long-range ordering. LC 
phases are reached by lowering temperature T from the isotropic (I), ordinary liquid phase. The sequence of 
phases depends on the length of aliphatic chains of anisotropic nCB molecules.

The dominant interaction between nCB molecules and an external electric field E exhibits a quadrupolar 
character, tending to align n  parallel to E . This leads to a reduction in dipolar entropy contribution. The largest 
E - driven changes in the latter component are expected close to I-N and I-SmA order-disorder phase transitions, 
in which orientational order appears. Indeed, preliminary experimental results performed by Lelidis and 
Durand27 and Zhang’s group28 indicate that ECE at the I-N transition could be substantial.

In this paper we consider LCs as dielectric materials. Our aim is to determine conditions (temperature 
regime and material properties) for which one could obtain maximal ECE-driven temperature response ΔTEC 
if an external field E is switched on or off. For this purpose, we need to maximize E driven change in LC ori-
entational entropy contribution (i.e. in LC orientational ordering). We use a minimal mesoscopic Landau-de 
Gennes-Ginzburg type modelling to determine key parameters controlling ECE at the I-N and I-SmA phase 
transition. We test the validity of our modelling by measuring ΔTEC in 8CB and 12CB LCs, which exhibit the I-N 
and direct I-SmA phase transition, respectively.

Results
We identify key parameters affecting electrocaloric driven temperature changes ΔTEC in nCB LCs. For this pur-
pose, one needs to consider external electric field E driven entropy changes. In an adiabatic process, the total 
entropy is conserved, i.e. ΔΩtot = lLCΔΩ + ΔΩ  = 0. Here, totΔΩ  stands for the total change in entropy, LCΔΩ  = 
Ω − ΩE T E T[ , ] [ , ]LC 2 2 LC 1 1  determines the change in LC orientational degrees of freedom, and ΔΩl  = 
Ω − ΩT T[ ] [ ]l l2 1  labels the entropy change in the so-called lattice contribution. The latter contribution refers to 
lattice vibrations within the system. The subscripts “1” and “2” refer to the initial state {E1, T1} and the final state 
{E2, T2} of the adiabatic process, respectively.

We calculate ΩLC within the volume V for given conditions from the expression

Ω = − ∂ ∂E T F T[ , ] [ / ] , (1)ELC LC

where FLC describes the free energy contribution of LC orientational degrees of freedom. On the other hand, we 
express the lattice contribution from the relation
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Here Cl stands for the heat capacity contribution per volume of the remaining degrees of freedom in which we 
neglect temperature variations within the temperature interval = + ΔT T T T[ , ]1 2 1 EC .

Modelling of LC phase behaviour.  In expressing FLC, we use the Landau-de Gennes-Ginzburg approach 
in terms of the nematic tensor order parameter Q and the smectic complex order parameter eiψ η= φ. In the case 
of nematic uniaxial ordering, Q can be described with the nematic director field n and the uniaxial order param-
eter S. The unit vector n points along a local uniaxial direction. The uniaxial nematic order parameter S describes 
the amplitude of orientational ordering. In a perfectly aligned nematic phase and isotropic phase, it holds S = 1 
and S = 0, respectively. The translational order parameter η quantifies the degree of translational ordering and the 
phase φ locates the smectic layers.

In our modelling we assume that the amplitude fields (S and η) of the order parameters are spatially homoge-
neous and that the respective gauge fields (n and φ) are spatially undistorted. Therefore, n  is spatially homoge-
neously aligned along a single symmetry breaking direction (say along the z-axis of the Cartesian coordinate 
system (x,y,z)) and smectic layers of thickness d are equidistant, determined by d z d2 /φ π= = . Consequently, it 
holds that =F V fLC . Here V stands for the volume of the LC body. The free energy density is expressed as

⁎ ⁎f a T T S b S c S a T T b c DS SE( ) ( ) (3)n n n n s s s s
2 3 4 2 4 6 2

0
2η η η η ε ε= − − + + − + + − − Δ .

The quantities a b c T a b c T, , , , , , ,n n n n s s s s
⁎ ⁎ are temperature independent material constants. The positive con-

stant D determines the coupling strength between the nematic and smectic order parameter. The value of D 
monotonously increases with the length of aliphatic chains of nCB molecules. The sequence of LC phases and 
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character of temperature driven phase transitions depends on the value of D. Qualitative changes in phase behav-
iour are obtained for the values D D 0c

(1)= >  and D D Dc c
(2) (1)= > . On lowering T from the isotropic phase, the 

following behaviour is observed26,29. I-N-SmA phase sequence forms for D Dc
(2)≤  and the I-N phase transition is 

weakly 1st order. On the other hand, the N-SmA phase transition is continuous for <D Dc
(1) and discontinuous 

for < <D D Dc c
(1) (2). For ≥D Dc

(2), one observes a direct I-SmA discontinuous phase transition. Therefore, Dc
(1) 

and Dc
(2) correspond to the tricritical and to the I-N-SmA triple point, respectively. In the study, we consider 8CB 

and 12CB LCs, which are characterized by ∼D Dc
(1) and ∼D Dc

(2), respectively. The quantity ε0 is the electric 
permittivity constant and ε ε εΔ = − ⊥ measures the LC dielectric anisotropy, which is positive for nCB LCs. 
Here ε  and ε⊥ determine the dielectric response for the external field E  aligned parallel and perpendicular to n, 
respectively.

For result presentation and scaling purposes, we introduce the nematic uniaxial correlation length ξn and 
the nematic external field extrapolation length ξe. They are temperature dependent and we express them at the 
nematic-isotropic phase transition temperature T = TIN in the absence of an external electric field as
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here =S S T( )IN0  stands for the equilibrium value of the uniaxial order parameter at the I-N phase transition, and 
L0 determines the bare (temperature independent) nematic elastic constant in the single nematic elastic constant 
approximation. This constant determines elastic resistance to spatial non-homogeneities in nematic ordering. The 
quantity ξn estimates typical length on which the locally perturbed nematic order parameter recovers its bulk 
value at =T TIN. On the other hand, ξe describes the typical distance on which locally perturbed nematic director 
field n recovers orientation along E . In typical LCs it holds 20nξ ∼  nm, and 0 1eξ ∼ .  μm for E 10 kV cm 1∼ − .

In terms of these experimentally measurable quantities, we express the following scaled and dimensionless 
quantities1:
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⁎ ⁎T T T a T band /n s s s0 IN 0ηΔ = − = .

In this scaling, the dimensionless free energy density = Δf f a S T/( )0 0
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We first summarise the main phase behaviour features in the absence of smectic ordering (more details are 
presented in the Supplementary). For σ = 0, the phase transition temperature TIN, the isotropic supercooling 
temperatures ⁎Tn , and the nematic superheating temperature ⁎⁎Tn , correspond to r r T[ ] 1IN IN= = , r r T[ ] 0n

⁎ ⁎= = , 
and r r T[ ] 9/8n= =⁎⁎ ⁎⁎ , respectively. On increasing σ, the phase transition temperature increases as 
r [ ] 1IN σ σ= +  in the subcritical regime σ σ< = .0 5c . In the supercritical regime σ σ≥ c, the phase transition 
ceases to exist.

Typical nematic and smectic phase behaviour resulting from equation (6) on varying D is depicted in Fig. 1. 
On decreasing temperature, we observed the phase sequence I-N-SmA for <D Dc

(2) and I-SmA for D Dc
(2)≥ . If 

the external electric field is present the phase transition temperatures are increased. Furthermore, the isotropic 
phase is replaced by paranematic (P) ordering, which exhibits a finite degree of orientational ordering. Note that 
discontinuous I-N and P-N phase transitions are replaced by gradual evolution of orientational ordering on var-
ying T for 0 5σ > . .

ECE response: numerical analysis.  We determined conditions maximizing ΔTEC in nCB LCs. For this 
purpose, we first analyse the EC response in nematic ordering. The equations determining ΔTEC are described 
in Methods (see equation (19)). In deriving them, we assume that i) the total entropy of the system is zero on 
adiabatically switching on or off E, and ii) that at each temperature, nematic ordering is determined by the 
Euler-Lagrange equilibrium equation. Therefore, we assume that the nematic order relaxation time is much 
shorter in comparison to the characteristic thermal relaxation time. The resulting expressions (see equation (17)) 
suggest that large responses are expected if one switches on E just above TIN, and E should be strong enough to 
induce nematic ordering. In such a way, the external field E driven increase in nematic ordering is large and con-
sequently, so is the change in orientationally dependent entropy contribution.

For this purpose, we considered temperatures just above the I-N phase transition. Representative results follow-
ing the adiabatic switching on the external electric field are shown in Fig. 2. In this case E T T S{ 0, , 0}IN1 1 1= > =  
and E E T T T S S{ , , 0}2 2 EC 1 2= + Δ > ≡ > . We plot = σS S[ ], σΔ = ΔT T [ ]EC EC  and R R[ ]= σ  dependencies, 
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where R T T/EC 0σ= Δ Δ  is defined as the ratio of the temperature change with respect to the applied external electric 
field strength. We analyse the external field driven ECE responses on varying the initial temperature 

= > =T T T E[ 0]1 IN  and material properties, which are collected in the dimensionless parameter γ (see equation 
(20)). In Fig. 2(a–c) we vary T1 (i.e. r T T T T( )/( )n n1 1 IN

⁎ ⁎= − −  for fixed material properties, represented by γ = 1. 
Such values of γ roughly correspond to 8CB LC. One sees that on decreasing T1 towards TIN, S[σ] and T [ ]EC σΔ  dis-
play increasingly steeper s-shaped profiles. The efficiency of the response on applying the external field is evident 
from Fig. 2c, where the EC responsivity R[σ] is depicted. For low enough values of T1, the R[σ] dependence exhibits 
a well-pronounced maximum at σ < 0.4. For 1γ = , these responses are subcritical.

Next, we analyse the behaviour of the above quantities on varying γ. We consider a temperature T1 close to TIN 
where the EC responses are relatively large, and we analyse how the EC response could be further increased by 
choosing appropriate material properties. The resulting external field driven responses on varying γ are plotted in 
Fig. 2(d–f). One sees that on decreasing γ, the S[σ]and T [ ]EC σΔ  dependencies become steeper and below some 
critical value exhibit a 1st order-type phase transition. It is evident that despite a relatively weaker nematic contri-
bution in entropy, the EC response ΔTEC could be larger, due to the observed discontinuous response. Figure 2f 
shows the EC responsivity R as a function of an external field σ. For γ = 0.5 it exhibits a sharp anomaly at σ ~ 0.2.

Finally, we consider the EC response after the external field is adiabatically switched off. For this purpose, we 
assume E is switched on for a long enough time so that the initial temperature T ~ T1 recovers. Then, we switch the 
field off and show the corresponding response in Fig.  3. In this case = > >E E T T S{ , , 0}1 1 IN 1  and 
E T T T S{ 0, , 0}2 2 EC 1 2= + Δ < > . The EC response is, in this case, weaker because both S1 and S2 are positive.

This analysis reveals that to achieve large EC responses on switching on E, the initial temperature should be 
just above the phase transition temperature. Note that the latent heat L of the phase transition for E = 0 is given by 
L T a T V S S a T VS( )IN n IN n INLC

2 2
0
2= ΔΩ = − =+ − , where S 0=−  ( =+S S0) describes a value of S just below (above) 

T = TIN. By comparing the expression for L and equation (13), one sees that L dominates the ΔTEC response for 
T TIN1 ∼ , providing S T E S[ , ]2 0∼ . Therefore, on increasing L, one expects a stronger EC response. The latter is 
expected to be larger at a direct I-SmA phase transition. The established smectic layers have a similar impact on 
nematic ordering as an ordering field. To estimate this effect, we compare the entropy changes in I-N and direct 
I-SmA phase transitions (details are given in Methods). Our derivation yields

⁎

⁎
ΔΩ =

ΔΩ <
= +

−
−

∼D D
D D
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where ∼A > 0 measures the ratio of representative smectic to nematic condensation penalties (see equation (13)). 
Here (i) D D[ ]cLC

(2)ΔΩ =  and (ii) ΔΩ <D D[ ]cLC
(2)  describe the change in the LC contribution to the entropy for (i) 

the direct I-SmA phase transition at the triple point and (ii) I-N phase transition. Equation (7) suggests that in the 
former case, the latent heat is larger and its relative strength with respect to I-N change increases linearly with A∼.

ECE response: experimental results.  Our theoretical and numerical analysis indicates that large ECE 
responses are expected near the I-N phase transition. Furthermore, the derived equations suggest that the latent 
heat L released on entering the isotropic phase strongly influences ΔTEC. Therefore, LCs exhibiting a large value 
of L are expected to be advantageous as EC working materials. To verify these predictions, we measured ΔTEC in 
(i) 8CB and (ii) 12CB LCs of the nCB family. They exhibit latent heats (i) ∼L 5 J/g at the N-I phase transition in 
8CB and (ii) ∼L 10 J/g at the SmA-I phase transition in 12CB. We first measured the ECE response in 8CB using 

Figure 1.  Stability regime of LC phases on varying the coupling strength D between the nematic and smectic 
order parameter for different values of the external electric field E, which is represented by the dimensionless 
parameter E2σ ∝ . The quantity Dc

(2) corresponds to the triple point value of D calculated for σ = 0. For σ = 0.4 
the phase transition temperatures are shifted to larger values and the isotropic phase is replaced by the 
paranematic (P) phase. In the calculations we set T 309 Kn =⁎ , T 310 KIN = , T 300 Ks

⁎ = , A = 1.
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Figure 2.  External field driven ECE responses on varying T1 (i.e. the scaled temperature r T T T( )/1 1 0= − Δ ) 
(a–c) or γ (d–f). (a) S = S[σ], (b) T T [ ]EC EC σΔ = Δ , (c) =R R[σ] for γ = 1. r1 = 1.01: black full curve; 
r r 9/81

⁎⁎= =  red dashed curve; = .r 1 21 : blue dotted curve; r 1 31 = . : green dash - dotted curve. (d) S S= [σ], 
(e) T T [ ]EC EC σΔ = Δ , (f) R = R[σ] for r 1 011 = . , γ = .0 5: black full curve; 1γ = : red dotted curve; γ = 2: blue 
dashed curve σ= =S S T[ , 0]IN0 .

Figure 3.  External field driven ECE responses when the field is switched off. (a) =S S1 1[σ] (red dashed curve) 
and =S S2 2[σ] (black full curve), (b) T T [ ]EC EC σΔ = Δ . γ = 1, = .r 1 011 .
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a moderate external field change ΔE = 10 kV cm−1 in a broad temperature range encompassing the SmA-N and 
I-N phase transition to probe where the responses are largest. Results shown in Fig. 4a reveal elevated ΔTEC 
responses at the SmA-N ( T E/ 6 10 K cm/kVEC

3Δ Δ ∼ × − ) and N-I T E( / 8 10 K cm/kV)EC
3Δ Δ ∼ × −  phase 

transition. In line with the theoretical prediction, the response is larger in the latter transition due to the larger 
E-driven change in orientational ordering. Afterwards, we probed ECE responses at several temperatures using 
larger ΔE changes, see Fig. 4b. We obtained the maximal response T 1 4 KECΔ ∼ .  at ∼T TIN  for ΔE = 10 kV cm−1, 
i.e. T E/ 2 10 K cm/kVEC

2Δ Δ ∼ × − . Finally, we measured ΔTEC in 12CB, which exhibits a larger L value at the 
orientational order-disorder phase transition compared to 8CB. Figure 5a reveals that on approaching the phase 
transition, the ECE response monotonously increases. We obtained the largest response Δ ∼ .T 6 5 KEC  (i.e. 

T E/ 8 10 K cm/kVEC
2Δ Δ ∼ × − ) just above the SmA-I phase transition. Note that so far, this is the largest meas-

ured value ΔTEC in LCs in general. In Fig. 5b we show a typical time evolution of the temperature in a liquid 
crystal when an external field is stepwise switched on. Initially, there is a relatively abrupt rise due to ECE. It is 
followed by roughly exponential decay towards a temperature plateau which is above the initial sample tempera-
ture. This temperature increase arises due to the Joule heating produced by ionic impurities in the sample. 
Figure 5c presents a typical response when an external field is switched off. In this case, we have a relatively abrupt 
temperature decrease due to ECE, followed by roughly exponential decay towards a temperature plateau.

Conclusions
We study electrocaloric (EC) response in the nCB LC family both theoretically and experimentally. We focus on 
discontinuous order-disorder Isotropic-Nematic (I-N) or Isotropic-SmA (I-SmA)) phase transitions which dis-
play relatively large changes in orientational order entropy contribution. In our modelling, we used a mesoscopic 
Landau-de Gennes-Ginzburg approach in terms of nematic and smectic order parameters. The equations deter-
mining ΔTEC reveal that latent heat dominates the EC response if an external field is adiabatically applied just 
above the phase transitions. Furthermore, calculations reveal that ΔTEC monotonously increases if an initial 
sample temperature is approached from above the phase transition temperature. Furthermore, we analysed the 
impact of material properties and found that for γ ≤ 1, samples could exhibit discontinuous E-driven changes 
that are otherwise gradual. We also demonstrate analytically that the phase transition latent heat is significantly 
increased if the N-I phase transition is replaced by a direct SmA-I phase transition. For the nCB series, this takes 
place above the N-SmA-I triple point, i.e., for higher nCB homologues with n ≥ 10. We tested our theoretical and 
numerical predictions experimentally by measuring ΔTEC using high precision calorimetry in 8CB and 12CB. 
These nCB representatives exhibit SmA-N-I and direct SmA-I phase transitions at increasing temperatures. 
Furthermore, the nematic-smectic coupling constant of 12CB is close to the tricritical point, which we used in our 
derivation where we express the latent heat at the direct SmA-I phase transition. Using relatively small changes in 
an external electric field, ΔE = 10 kV cm−1, we probed ΔTEC response in 8CB over a wide temperature interval 
including both SmA-N and N-I phase transitions. Experiments reveal anomalous ΔTEC increase at the transi-
tions. In line with expectations, the response at N-I is larger due to the larger change in orientational ordering. For 
larger electric-field changes (ΔE = 50 kV cm−1 and ΔE = 60 kV cm−1) that are sufficient to induce complete cross-
ing the I-N transition line and to fully release the latent heat, an enhanced T 1 4 KECΔ ∼ .  is observed. This value, 
which is about 0.8 K above the electrocaloric response further away from the transition, is in good agreement with 
expected enhancement due to the released latent heat. In general, the measured responses are in line with our 
calculations, which suggest Δ ∼ .T 1 4 KEC  at order E VΔ ∼  μm−1 just above I-N phase transition. In order to 
demonstrate the impact of the latent heat L on ΔTEC, we study ECE response in 12CB, which has roughly six 
times larger L than 8CB. At the SmA-I phase transition, we obtained Δ ∼ .T K6 4EC  at ΔE = 80 kV cm−1 
( T E/ 8 10 K cm/kVEC

8Δ Δ ∼ × − ), corresponding to the largest ΔTEC measured so far in liquid crystals. The 
measured responses (both in 8CB and 12CB) are large enough to be exploited in potential EC-based applications. 
The temperature span in cooling devices could be further enhanced by an order of magnitude by regeneration 

Figure 4.  ECE response in 8CB LCs. On lowering the temperature in 8CB, the system exhibits I-N and N-SmA 
phase transitions at temperatures T 313 342 KIN ∼ .  and ∼T 307 KNA , respectively. (a) E 10 kV cm 1Δ = − , (b) 
Δ = −E 50 kV cm 1 and E 60 kV cm 1Δ = − .
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techniques16. As an example, we present in the Supplementary an EC active regeneration mechanism. By com-
muting LC EC material between regions with and without an external electric field, one could dynamically build 
up a temperature difference between these parts of the device. In such devices, the liquid properties of LC electro-
caloric coolant might be advantageous as LC material can play a role as an active regenerator. In contrast to cur-
rent regeneration-based EC devices that exploit EC-passive regeneration material, devices exploiting an LC 
EC-active regenerator could significantly improve cooling power/mass ratio. Note that the obtained EC responses 
in LCs are comparable to those measured in competitive solid dielectric materials30–32. However, introducing LCs 
as EC material might open the gates to several new EC-based applications. In addition to liquid LC behaviour, we 
stress a rich vocabulary of different LC phases and structures. For example, using appropriate LC mixtures, one 
can tune temperature phase behaviour to desired regimes. Furthermore, EC-desired properties could be further 
tuned by doping LCs with appropriate nanoparticles (to reduce Joule heating or increase the phase transition 
temperature span).

Methods
Phenomenological model.  In our theoretical and numerical analysis, we use a Landau-de Gennes-
Ginzburg –type phenomenological mesoscopic approach. We describe the uniaxial orientational ordering by the 
nematic tensor order parameter1

S n nQ I1
3 (8)

=


 ⊗ −



. 

Here ⊗ stands for the tensor product and I is the identity tensor. The smectic A translational ordering is 
described by the smectic complex order parameter field

e (9)iψ η= .φ

The amplitudes S and η determine the degree of orientational and translational ordering, respectively; the 
symmetry breaking fields n and φ determine the structure of nematic and smectic ordering.

In terms of order parameter fields, we express the free energy density as a sum = + + + +f f f f f fc
n

c
s

e f coupl
( ) ( ) , 

consisting of the nematic condensation ( fc
n( )), smectic condensation ( fc

n( )), elastic (fe), external electric field (ff), and 
coupling (fcoupl) contributions. These terms are expressed as

⁎= − − +f a T T Tr b Tr c TrQ Q Q3
2

( ) 9
2

9
4

( ) , (10a)c
n n

n
n n( ) 2 3 2 2

f a T T b c( ) , (10b)c
s

s s s s
( ) 2 4 6⁎ ψ ψ ψ= − | | + | | + | |

 f L C n C iq nQ ( ) , (10c)e 0
2 2

0
2ψ ψ= |∇ | + | × ∇ | + | ∇ − |⊥

 f E EQ3
2

, (10d)f
0ε ε

= −
Δ

⋅

f D Q3
2 (10e)coupl

⁎ψ ψ= − ∇ ⋅ ∇ .

Figure 5.  (a) The EC response in 12CB which exhibits the direct I-SmA phase transitions at ∼T 332 KISmA . 
Δ = −E 80 kV cm 1. (b) A change in sample temperature ΔT as a function of time immediately after the external 
electric field is switched on at t = 0. The contribution due to the Joule heating is depicted with the dashed line. 
(c) The change in sample temperature ΔT as a function of time immediately after the external electric field is 
switched off at t = 0.
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The condensation terms fc
n( ) and fc

s( ) determine the equilibrium value of the nematic and smectic order 
parameter if the order parameters are decoupled, i.e. f 0coupl = . For positive material constants an, bn, cn, as, bs, cs 
and D = 0, the bulk of I-N and N-SmA phase transitions are of the first and second order, realized at 
T Tn

b
a cIN 4

n

n n

2⁎= +  and ⁎T Ts= , respectively. The elastic contribution fe is weighted by the positive representative 
bare nematic (L0), smectic bend ( ⊥C ) and smectic compressibility (C||) elastic constant. We henceforth set 

≡ ∼ ⊥C C C0  and neglect the smectic elastic anisotropy. This term penalizes spatial inhomogeneities in order 
parameters S and η, favours homogeneous ordering of n along a single symmetry breaking direction, tends to 
align the smectic layer normal /sν φ φ= ∇ |∇ |  along n  and enforces the layer distance π=d q2 / 0. The field term 
ff describes the coupling of nematic order parameter with the external electric field E. We consider LCs with pos-
itive dielectric anisotropy Δε, and ε0 stands for the dielectric permittivity constant. The N-SmA order parameter 
coupling term fcoupl is weighted by the positive coupling constant D.

In our study we limit to the electrocaloric effect (ECE) in bulk where we neglect spatial inhomogeneities in 
order parameters. We set the parameters so that n is homogeneously aligned along a single symmetry (say, along 
the z-axis) direction, the SmA layers adopt equilibrium spacing π=d q2 / 0 and φ = q z0 . Furthermore, we set that 
E is imposed along the z-axis. With this in mind, we obtained equation (3).

The impact of smectic order on latent heat.  Our aim is to demonstrate that the change in the orienta-
tionally dependent part of the entropy at the I-SmA phase transition is larger in comparison to the change at the 
I-N phase transition. For this purpose, we focus on a regime where the coupling between the nematic and smectic 
ordering is relatively strong, therefore D Dc

(1)≥ . We express the nematic ordering in the presence of smectic layers 
as the sum δ= +S s S. Here s minimizes free energy density f for η = 0, and δS measures increase in orienta-
tional ordering if smectic layers are present. Expanding f up to the second order in δS and minimizing the result-
ing expression with respect to δS for E = 0 yields

f a T T s b s c s a T T b c( ) ( ) , (11)n n n n s s
eff

s
eff

s
2 3 4 ( ) 2 ( ) 4 6⁎ η η η= − − + + − − +

where = +T T Ds a/s
eff

s s
( ) ⁎ , b D b 0s

eff
s

( ) 2χ= − > , and S s[ ]f
S

1 2

2χ = =− ∂

∂
. Hence, we obtain decoupled equations 

for s and η where both order parameters exhibit 1st order phase transition at varying temperatures. In addition to 
r, we also introduce dimensionless smectic scaled temperatures = − −r T T T T( )/( )s s

eff
c s

eff( ) ( ) , and scaled order 
parameters =s S S/ 0 and / 0

η η η= . Here Tc denotes the phase transition temperature at which the smectic order-
ing appears for 0σ = , σ= = =S S T T[ , 0]0 IN , and T T[ , 0]c0η η σ= = = . It follows that

  
  

 η η η= − + + − +
∼f rs s s A r2 ( 2 ), (12)s

2 3 4 2 4 6

where = −f f a T T S/( ( ) )n nIN 0
2⁎

  and the coefficient A∼ measures the relative strength of nematic and smectic free 
energy condensation contributions:

A a T T S
a T T

( )
( ) (13)
n IN n

s c s
eff

0
2

( )
0
2η

=
−

−
.

∼ ⁎

In this scaling at =T TIN it holds that r 1= ,  =s 1, and at T = Tc it follows r 1s =  and 


1η = .
We use equation (1) to calculate the orientational entropy change on crossing into the isotropic phase. In the 

isotropic phase it holds Ω = 0LC ; just below the phase transition line one obtains

D D
a V

[ ] 1,
(14a)

c

n

LC
(2)Ω <

= −

Ω =
= −






+
−
−






D D
a V

A T T
T T

[ ] 1 ,
(14b)

c

n

n

s

LC
(2)

IN

ISmA

⁎

⁎

where T D D T[ ]c c
(2)

ISmA= = .

EC response above TIN.  We have also derived equations determining the electrocaloric response on adia-
batically switching on or off the external field E in the nematic or isotropic phase. The initial and final system state 
are determined by {E1, T1} and {E2, T2}, respectively. In the adiabatic process, the total change of entropy equals 
zero, therefore it holds that

, (15)lLCΔΩ = ΔΩ

ΔΩ = Ω − ΩE T E T[ , ] [ , ]LC LC 2 2 LC 1 1  and ΔΩ = Ω − ΩT T[ ] [ ]l l l2 1 . The change in the lattice entropy is given by 
equation (2). The orientational LC ordering contribution can be expressed as the partial derivative of the free 
energy density at a constant value of an external electric field:

Ω = −





∂
∂







= −
F
T

a S V
(16)

LC

E
nLC

2
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Here we set that LC ordering attains the equilibrium ordering. Hence, we assume that the nematic order 
parameter relaxation time is much shorter with respect to the thermal relaxation time. This is a sensible assump-
tion, because typical order parameter relaxation times close to I-N phase transition are of the order of τ ∼ −10 s7 . 
On the other hand, the characteristic thermal relaxation time is typically of the order of 1 ms in confinements 
exhibiting typical linear lengths of µm size2.

By combining equations (2), (15) and (16) we obtain a self-consistent equation for T2:

T T exp a
C

S S( ) ,
(17)

n

l
2 1 2

2
1
2=






−





where ≡S S E T[ , ]2 2 2  and S S E T[ , ]1 1 1≡ . Values of S1 and S2 are determined by the equilibrium equation f S/ 0∂ ∂ =  
for the states determined by (E1, T1) and (E2, T2), respectively.

We now consider cases where T T T1 IN≡ >  and T T T2 EC≡ + Δ . For cases Δ T T/ 1EC , equation (17) sim-
plifies to

T T S S a
C

/ ( )
(18)

n

l
EC 2

2
1
2Δ ∼ − .

Using dimensionless quantities, we express equation (18) describing the ECE response and the equilibrium 
equations for the degree of nematic ordering. It follows

r r s s( ) 0, (19a)2 1 2
2

1
2γ− − − = 

r s s s2 6 4 0, (19b)i i i i i
2 3

   σ− + − =

where i = {1, 2},  r r T E s s r[ ], [ ], [ , ],i i i i i i i iσ σ σ≡ ≡ ≡  and

⁎
γ =

Δ
.

a T S
C T (20)

n n

l

0
2

0

Here we took into account that + Δ ∼ Δ⁎ ⁎r T T T T/ /n n0 0. For a reference LC (5CB) close to TIN, it holds 
a 10 JK mn

5 1 3∼ − − , ∼⁎T 300 Kn , T 1 K0∆ ∼ , ∼ .S 0 30 , and C 4 10 J ml
6 3∼ ⋅ − . Therefore, typically γ ~ 1 and 

T T/ 100n 0
⁎ Δ > . Note, that it holds 0 01a S

C
T

T
n

l n

0
2

0γ= ∼ .∆
⁎ , which justifies expansion used in deriving equation (18). 

The equations were solved using the Newton method33.

Experimental set up.  In order to determine the ECE in soft materials, a high-resolution calorimeter was 
utilized with small modifications. Its exceptional temperature stability allowed measurements of each sample’s EC 
temperature variations induced by the external electric field.

We used octyl cyanobiphenyl (8CB) and dodecyanobiphenyl (12CB) LCs. On decreasing temperature, the 
8CB exhibits the 1st order I-N phase transition at ∼T 313 KIN . On further decreasing temperature, a weakly 1st 
order nematic – smectic A (N-SmA) phase transition takes place at T 307 KNA ∼ . In 12CB we have a direct I-SmA 
phase transition at T 332 KISmA ∼ .

A liquid crystal compound of about 5 mg–10 mg was loaded into a high-purity glass cell composed of two 
140 μm thick glass plates, coated by indium tin oxide (ITO) electrodes and separated by a 120 μm thick Mylar 
spacer. The temperature of the cell was measured by a small-bead thermistor attached to the glass plate. The ECE 
measurement protocol is described in detail in refs8,16. In the standard protocol that was used in our experiments, 
step-like electric pulses were applied, always starting from 0 V. The duration of the electric pulses was long enough 
to allow the sample to reach thermal equilibrium with the surrounding bath. This time was typically much longer 
than the external thermal time of approximately 100 s. The typical internal thermal time scale required for the 
whole system to reach internal thermal equilibrium was about 20 s. The relaxation of the temperature of the whole 
system, composed of the cell, thermistor, glue, and attaching wires, was monitored on a time scale much longer 
than the time scale required for internal equilibration.

In the data analysis, the long temperature relaxation tail of the internally thermally equilibrated sample was 
fitted to the exponential decay ansatz T t T T( ) expB C

t/= + Δ τ−  in order to determine temperature change ΔTC. 
In most cases, some Joule heating = + Δ − τ−T t T T( ) (1 exp )J B J

t/  was present and was subtracted from the elec-
trocaloric data. In such cases, the remaining result T(t) − TJ(t), was fitted to the exponential decay ansatz in order 
to determine the true change of the cell temperature ΔTC due to the ECE. This was later additionally corrected by 
taking into account all masses constituting the cell that were carefully measured prior to the experiment and 
which by absorbing the heat, during the internal heat equilibration, influenced the measured ECE temperature 
response T T C C/C i p

i
pEC
ECΔ = Δ ∑ . Here, =C m cp

i i
p
i  represents the heat capacity of each constituent, i.e., the heat 

capacities of the sample, glass plates, thermistor, attaching wires, etc. Cp
EC stands for the heat capacity of the EC 

active material, i.e., the part of the LC sample under the electrodes.
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