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1. Supplemental discussion on theoretical modelling 
 
Modulated nematic phases:  

Due to the uniform electron density, the elastic x-ray scattering in nematic phases detects only a 
short range positional order of molecules, while the resonant scattering [1, 2] provides the 
information on a non-uniform orientational structure of molecules. To calculate the dispersion 
correction to the form factor we start from the x-ray polarizability of a molecule written in the 
eigen system of the molecule with the long molecular axis along the ݖ-axis. We assume [3], that 
the form factor in the eigen system (ܨ௘௜ሻ has a form of a traceless tensor (as does the anisotropic 
part of the polarizability tensor): 

௘௜ܨ ൌ ቌ
ଵ݂ 0 0
0 ଶ݂ 0
0 0 െሺ ଵ݂ ൅ ଶ݂ሻ

ቍ		. 

In the NTB phase the averaged direction of the long molecular axes (director) is inclined from the 
 axis (Fig. S1(a)), while in the NSB ݖ axis of the laboratory frame and rotates along the laboratory ݖ
phase, the director oscillates along the ݖ axis (Fig. S1(b)). The cholesteric phase can be described 
as a special case of the NTB phase with a conical angle equal to 90 degrees.  

The dispersion correction in the laboratory system is obtained by the rotation of the molecular 
coordinate system. In the NTB phase we first rotate it by an angle ்ߠ஻ (the conical angle) around 
the ݕ axis and then by an angle ߮ ൌ  axis. The dispersion correction tensor for ݖ around the ݖ஻்ݍ
the NTB phase is thus  

ሺ்஻ሻܨ ൌ ܴఝ்൫ܴఏ
 ,		௘௜ܴఏ൯ܴఝܨ்

where ܴఏ is: 

ܴఏ ൌ ൭
cos ஻்ߠ 0 sin ஻்ߠ

0 1 0
െ sin ஻்ߠ 0 cos 		஻்ߠ

൱ 
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and ܴఝ is 

ܴఝ ൌ ൭
cos߮ sin߮ 0
െ sin߮ cos߮ 0
0 0 1

൱			. 

Calculating the Fourier transform of ܨሺ்஻ሻ (ܨ௤
ሺ்஻ሻ), we find that the elements of the dispersion 

correction tensor are different from zero only when ݍ௭ has one of the following values: 0, േݍ଴ or 
േ2ݍ଴, where ݍ଴ ൌ  is the magnitude of the wave vector of the heliconical deformation with ܮ/ߨ2
the pitch ܮ. If ݍ௭ ൌ  :଴, the dispersion correction to the form factor isݍ

௤బܨ
ሺ்஻ሻ ൌ ൬ ଵ݂ ൅

ଶ݂

2
൰ sinሺ2்ߠ஻ሻ ൭

0 0 1
0 0 ݅
1 ݅ 0

൱ 

and if ݍ௭ ൌ  :଴ݍ2

ଶ௤బܨ
ሺ்஻ሻ ൌ ൤

1
2
ሺ ଵ݂ െ ଶ݂ሻ ൅ ൬ ଵ݂ ൅

ଶ݂

2
൰ sinଶ ஻൨்ߠ ൭

1 ݅ 0
݅ െ1 0
0 0 0

൱			.		 

In order to find the dispersion correction tensor in the NSB phase we repeat the above procedure, 
but in this case we have to rotate the director around the ݕ axis by an angle ߠ ൌ ௌ஻ߠ sin  where ,ݖ଴ݍ
-଴ is the modulation wave vector.  As the splayݍ ௌ஻ is the magnitude of the modulation angle andߠ
bend modulation can be within any plane containing the ݖ axis, the resulting structure is then 
rotated around the ݖ axis by an angle ߮  to obtain the dispersion correction tensor for a domain with 
an arbitrarily oriented modulation plane. The elements of the tensor obtained in this way cannot 
be Fourier-transformed analytically, so we Taylor expand the tensor elements up to the second 
order in ߠ௦௕. If ݍ௭ ൌ  :଴, the dispersion correction to the form factor isݍ

௤బܨ
ሺௌ஻ሻ ൌ 2݅ ൬ ଵ݂ ൅

ଶ݂

2
൰ ௦௕ߠ ൭

0 0 cos߮
0 0 sin߮

cos߮ sin߮ 0
൱		 

and if ݍ௭ ൌ  :଴ݍ2

ଶ௤బܨ
ሺௌ஻ሻ ൌ ൬ ଵ݂ ൅

ଶ݂

2
൰ ௦௕ߠ

ଶ ൭
cosଶ ߮ cos߮ sin߮ 0

cos߮ sin߮ sinଶ ߮ 0
0 0 െ1

൱		. 

Next we study the effect of the polarization of the incident beam on the scattered light. Let the 
incident beam propagate along the ݕ axis of laboratory frame (Fig. S2) and is polarized along the 
 axis. The constructive x-ray interference will be observed from those parts of the sample, in ݔ
which the modulation axis is tilted by an angle 2/ߨ	 െ  ௦௖/2 with respect to the direction of theߠ
incident beam, where ߠ௦௖ is the scattering angle, i.e. for all the modulation axes lying on the cone, 
as shown in Fig. S2. For the modulation axis in the ݖݕ plane, the incident beam is ߪ-polarized. For 
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the modulation axis in the ݕݔ plane this incident beam is ߨ-polarized and for the other directions 
on the cone the incident beam has both the ߪ and ߨ component. 
 

 

 
Fig. S1. Schematic presentation of the a) NTB and b) NSB phase. c) Modulated nematic phase with two 
helices with molecules on the opposite side of the cone, shifted by ݄. 

 
 

 
Fig. S2. Scattering geometry (in the laboratory frame). The incident beam propagates along the ݕ axis and 
is polarized along the ݔ	axis (orange arrow). The scattering is constructive for all the directions of the 
heliconical axes lying on the cone. For the directions of the helix axes denoted by blue arrows the incident 
beam is ߪ-polarized and for the “green” directions the beam is ߨ-polarized. The scattering angle is ߠ௦௖ and 
 .is the azimuthal angle ߙ
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For the beam scattered at the azimuthal angle ߙ the ߪ and ߨ components of the incident beam are: 

റ௜௡ߪ ൌ ሺcos ߙ , 0,0ሻ		,  ߨሬറ௜௡ ൌ ሺ0,0, sin  ሻ	ߙ

and for the scattered beam the directions of the ߪ and ߨ component are: 

റ௦௖ߪ ൌ ሺ1,0,0ሻ	, ߨሬറ௦௖ ൌ ሺ0,െ sin ௦௖ߠ , cos  .			ሻ	௦௖ߠ

The amplitudes of the ߪ and ߨ components of the scattered light are found as [2]: 
 

ఙఙܣ ൌ෍ߪ௦௖,௝ܨ′௜௝ߪ௜௡,௜
௜,௝

			,		 

ఙగܣ ൌ෍ߨ௦௖,௝ܨ′௜௝ߪ௜௡,௜
௜,௝

			,	 

గఙܣ ൌ෍ߪ௦௖,௝ܨ′௜௝ߨ௜௡,௜
௜,௝

			,		 

గగܣ ൌ෍ߨ௦௖,௝ܨ′௜௝ߨ௜௡,௜
௜,௝

			.	 

 

where the elements of the tensors ܨ′௜௝ are the elements of tensors ܨ௤బ
ሺ்஻ሻ, ܨଶ௤బ

ሺ்஻ሻ, ܨ௤బ
ሺௌ஻ሻ or ܨଶ௤బ

ሺௌ஻ሻ 

rotated by an angle ߠ௦௖/2 around the ݔ axis: 

௜௝ܨ
ᇱ ൌ ܴఏೞ೎/ଶ

் ௤బ,ଶ௤బܨ
ሺ்஻,ௌ஻ሻܴఏೞ೎/ଶ			, 

with 

ܴఏೞ೎/ଶ ൌ

ۉ

ۈ
ۇ

1 0 0

0 cos ൬
௦௖ߠ
2
൰ sin ൬

௦௖ߠ
2
൰

0 െ sin ൬
௦௖ߠ
2
൰ cos ൬

௦௖ߠ
2
൰
ی

ۋ
ۊ

 

for the helix axis to be in the proper direction with respect to the incident beam for the constructive 
interference to occur. It is enough to rotate the tensor only about the ݔ-axis (and not also around 
the ݕ-axis), because all the directions of the helix axis on the cone that lead to constructive 
interference at some angle ߙ on the screen (see Fig. S2) are taken into account by considering all 
the possible directions of the polarization of the incoming beam. 

The intensity of the scattered light is then calculated as [2] 
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ܫ ൌ ఙఙ|ଶܣ| ൅	 గఙ|ଶܣ| ൅ ఙగ|ଶܣ| ൅  .				గగ|ଶܣ|

Keeping only the relevant factors required to compare the relative magnitudes of intensities, we 
find for the NTB phase: 

௤బܫ
ሺ்஻ሻ ൌ sinଶሺ2்ߠ஻ሻ cosଶ ൭

௦௖ߠ
ሺ௤బሻ

2
൱		, 

ଶ௤బܫ
ሺ்஻ሻ ൌ

൬െ
3
ଵ݂ଶ
൅ ሺ2 ଵ݂ଶ ൅ 1ሻ cosሺ2்ߠ஻ሻ൰

ଶ

4ሺ2 ଵ݂ଶ ൅ 1ሻଶ
൭1 ൅ sinଶ ൭

௦௖ߠ
ሺଶ௤బሻ

2
൱	൱ ൈ ൭cosଶ ߙ ൅ sinଶ ൭

௦௖ߠ
ሺଶ௤బሻ

2
൱ sinଶ  		൱ߙ

 
and for the NSB phase: 
 

௤బܫ
ሺௌ஻ሻ ൌ ௦௕ߠ	2

ଶ cosଶ ൭
௦௖ߠ
ሺ௤బሻ

2
൱		, 

ଶ௤బܫ
ሺௌ஻ሻ ൌ

1
64

௦௕ߠ
ସ 	ቂ4 cosଶ ߙ 	ቀ7 െ cos ܿݏߠ

൫20ݍ൯ቁ ൅ ቀ45 ൅ 16 cos ܿݏߠ
൫20ݍ൯ ൅ 3 cos ቀ2ܿݏߠ

൫20ݍ൯ቁቁ sinଶ  .			ቃߙ

 
In the calculation of the scattering intensity in the NSB phase we have averaged over all the possible 
orientations of the splay-bend plane. The value of the parameter ଵ݂ଶ ൌ ଵ݂/ ଶ݂ determines the 
intensity of the 2ݍ଴ peak with respect to the intensity of the ݍ଴ peak in the NTB phase. If ଵ݂ଶ ൒ 1 
the intensity of the 2ݍ଴ peak is approximately two orders of magnitude lower than the intensity of 
the ݍ଴ peak. If ݂ ଵଶ ൏ 1, the intensity of the 2ݍ଴ peak increases rapidly. The intensity scattered from 
a powder sample as a function of the azimuthal angle on the screen for the incident beam along 
the ݕ direction and polarized along the ݔ axis, is given in Fig. S3.  

 
Fig. S3. The intensity (ܫ) of the scattered beam (in arbitrary units) as a function of the azimuthal angle ߙ. 
The scattering geometry is shown in Fig. S2; blue lines: NSB; red lines: NTB; the red solid line for the 2ݍ଴ 
intensity: ଵ݂ଶ ൌ 0.8 and red dashed line: ଵ݂ଶ ൌ 1.0. Parameter values: ߠ௦௖ሺݍ଴ሻ ൌ ஻்ߠ ,∘10 ൌ 10∘. 
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Experimentally, only one diffraction peak is observed in the modulated nematic phase with no 
clear dependence of the intensity on the direction of the polarisation of the incident beam. We can 
therefore conclude that the observed signal corresponds to the full pitch band (ݍ଴ሻ in either the 
NTB or NSB modulated nematic phase. The NSB phase should be optically biaxial. Experimentally, 
no biaxiality is observed, so in the further discussion we focus on the NTB phase. The half pitch 
band (the 2ݍ଴ peak) should be strongly polarization dependent. Assuming ଵ݂ଶ ൎ 1, the intensity 
of this signal is expected to be much lower than for the full pitch band (Fig. S4). However, as we 
will show later in the study of the blue phases, we can expect that the parameter ଵ݂ଶ is lower than 
1 and in that case the 2ݍ଴ signal intensity in the NTB phase becomes comparable to the intensity of 
the ݍ଴ peak (Fig. S4(b)).  
 

 

 
Fig. S4. (a) The maximum intensity (ܫ௠௔௫) of the ݍ଴ peak (blue) and the maximum intensity of the 2ݍ଴ 
peak (violet) in the NTB phase as a function of the heliconical angle ்ߠ஻. Parameter values: ଵ݂ଶ ൌ 1, 
଴ሻݍ௦௖ሺߠ ൌ 10∘. (b) The ratio between the maximum intensity of the 2ݍ଴ and ݍ଴ peaks in the NTB phase as 
a function of the parameter ଵ݂ଶ at ்ߠ஻ ൌ ଴ሻݍ௦௖ሺߠ ,∘10 ൌ 10∘ and ߠ௦௖ሺ2ݍ଴ሻ ൌ 20∘. 

 
Possible reasons for the suppression of the 2ݍ଴ peak are discussed in the main text. Because the 

 ଴ peak has not been observed in any of the NTB material studied so far, this can be a hint toݍ2
search for a more fundamental reason, i. e. the structure of NTB might not be of a simple heliconical 
type. Therefore, we considered a modification of the NTB structure, assuming that it is built of two 
interlocked helical modulations mutually shifted as shown in Fig. S1(c). The dispersion corrections 
to the form factor for such a structure are easy to obtain. We add the form factors for two 

interlocked helices, including the phase shift between them, noting that ܨଶ௤଴
ሺ்஻ሻ is an even and ܨ௤଴

ሺ்஻ሻ 

is an odd function in ்ߠ஻, and obtain: 

ଶ௤బܨ ൌ ଶ௤బܨ
ሺ்஻ሻ൫1 ൅ ݁௜ଶ௤బ௛൯		, 

௤బܨ ൌ ௤଴ܨ
ሺ்஻ሻ൫1 െ ݁௜௤బ௛൯		. 
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If ݍ଴݄ ≪ 1, the dispersion correction to the form factor goes to zero for the ݍ଴ peak, as expected 
from the symmetry consideration only (the pitch length reduces to 2/ܮ). If, however, the second 
helix is shifted by 4/ܮ, then the intensity of the 2ݍ଴ peak is zero. It should be pointed out, that the 
intensity of the 2ݍ଴ peak is zero if the helix is shifted by 4/ܮ and the molecules are on the opposite 
side of the cone, as shown in Fig. S1, but it is zero also for a pure shift by 4/ܮ (with the molecules 
staying at the same side of the cone). 

Blue phase II: 

The position of the non-resonant peaks in the blue phase II (BPII) is calculated in the following 
way. An infinite line of a uniform electron density along the cylinder axis (Fig. S5(a)) represents 
a cylinder. The lines of uniform density, as shown in Fig. S5(b), represent the defects. The 

scattering vector ݍറ is given by ݍറ ൌ ,௟ሺ݄ݍ ݇, ݈ሻ, where ݍ௟ ൌ
ଶగ

௔
 and ܽ is the size of the 

crystallographic unit cell (and equals half the pitch of the helix, see Fig. S5(a)) and ݄, ݇ and ݈ are 
the Miller indices. 

 
Fig. S5. Structure of the BPII phase. In the calculation of the form factor of the unit cell the cylinders (a) 
and defects (b) are represented by lines. (c) In the calculation of the tensorial correction to the form factor 
we consider spatial variation of the director in the direction perpendicular to the cylinder long axis. 

 
The BPII phase consists of cylinders with their axes along the ݔ,  direction. The Fourier ݖ and ݕ

transform of each line representing a cylinder gives a delta function, either ߜሺݍ௫ሻ, ߜሺݍ௬ሻ or ߜሺݍ௭ሻ, 

where ݍ௜, ݅ ൌ ,ݔ ,ݕ  are the components of the scattering vector. Taking into account the position ,ݖ
of the cylinders in the unit cell we find the following form factor (ܨ௖) for the BPII phase: 

௖ܨ ൌ ௫ሻݍሺߜ 	൅ ௬൯݁௜గሺ௛ା௟ሻݍ൫ߜ ൅  .		௭ሻ݁௜గ௞ݍሺߜ

From the expression for ܨ௖ it follows, that at least one of the indices ݄ , ݇ or ݈ has to be zero in order 
to have the form factor different from zero. If only one index is zero, the form factor is always 
different from zero. If two indices are zero, then the nonzero index has to be an even number to 
obtain a nonzero form factor; thus there is no ሺ0,0,1ሻ peak, but there is a ሺ0,0,2ሻ peak. 
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The defect lines run along 
௔

ଶ
ሺ1,1,1ሻ ൅  ,ሺെ1,1,1ሻߣ

௔

ଶ
ሺ1,1,1ሻ ൅  ,ሺ1,െ1,1ሻߣ

௔

ଶ
ሺ1,1,1ሻ ൅

,ሺ1,1ߣ െ1ሻ and  
௔

ଶ
ሺ1,1,1ሻ െ ߣ ሺ1,1,1ሻ, whereߣ ∈ ቂ0,

௔

ଶ
ቃ. We assume, that along the defect lines the 

electron density differs from the electron density of the surrounding, so the form factor related to 
the defects (ܨௗ) is given by the Fourier transform of the electron density along the defect lines.  
We find: 

ௗܨ ൌ
ሺ1 െ ݁ି௜ሺ௛ା௞ି௟ሻగሻ

݄ ൅ ݇ െ ݈
݁ଶ௜ሺ௛ା௞ሻగ ൅

ሺ1 െ ݁ି௜ሺ௛ି௞ା௟ሻగሻ
݄ െ ݇ ൅ ݈

݁ଶ௜ሺ௛ା௟ሻగ ൅
ሺ1 െ ݁ି௜ሺି௛ା௞ା௟ሻగሻ

െ݄ ൅ ݇ ൅ ݈
݁ଶ௜ሺ௞ା௟ሻగ

െ
1 െ ݁௜ሺ௛ା௞ା௟ሻగ

݄ ൅ ݇ ൅ ݈
			. 

The non-zero intensity peaks are given in Table S1. Note, that the defects do not give any ሺ0,0, ݈ሻ 
peaks.  

Table S1. Theoretically calculated peaks. Ticks denote the peaks for which a non-zero intensity is 
predicted. In the BPI, the ሺ002ሻ peak is a purely resonant peak and in BPII, the	ሺ001ሻ peak is a resonant 
peak. The yellow and light green areas denote the peaks allowed by the	4ܫଵ32 symmetry of the BPI phase 
and the ܲ4ଶ32 symmetry of the BPII phase, respectively. Note, that the ሺ031ሻ peak in the BPI is not 
resonantly enhanced. The peak ሺ222ሻ is not marked as purely resonant because it is allowed by the 4ܫଵ32 
symmetry; it is a coincidence that for the chosen model of the electron density (along the cylinder axis and 
the defect lines) the intensity in the elastic scattering is zero.  The magnitude of the lattice wave vector is 
 .଴ݍ ௟ and the magnitude of the wave vector corresponding to the director modulation isݍ
 

 BP-II ሺ࢒ࢗ ൌ ૛ࢗ૙ሻ BP-I ሺ࢒ࢗ ൌ  ૙ሻࢗ
Peak 
ሺ࢒࢑ࢎሻ 

Elastic 
due to 
cylinders 

Elastic 
due to 
defects 

Resonant/resonantly 
enhanced 

Elastic 
due to 
cylinders 

Elastic 
due to 
defects 

Resonant/resonantly 
enhanced 

ሺ૙૙૚ሻ       

ሺ૙૚૚ሻ       

ሺ૚૚૚ሻ       

ሺ૙૙૛ሻ       

ሺ૙૛૚ሻ       

ሺ૛૚૚ሻ       

ሺ૙૛૛ሻ       

ሺ૛૛૚ሻ       

ሺ૙૜૚ሻ       

ሺ૜૚૚ሻ       

ሺ૛૛૛ሻ       

ሺ૙૜૛ሻ       

ሺ૜૛૚ሻ       
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It is important to point out, that in the elastic x-ray scattering, although allowed by the symmetry, 
none of the diffraction signals will be observed, because the cylinders are in close contact (i.e. the 
density in the unit cell is almost uniform) and the density difference between the defect lines and 
cylinders, if any, is very low, because the phase has only a short range positional order. However, 
as shown below, the peaks observed in the resonant x-ray scattering are actually at the positions 
expected for the non-resonant peaks due to the ‘resonant enhancement’ effect [5, 6].  

As in the case of the modulated nematic phase, to calculate the dispersion correction to the form 
factor, we consider the molecules having a rod-like shape. We present the calculations starting 
from the anisotropic traceless tensor ܨ௘௜ in the eigensystem, this time assuming that ଵ݂ ൌ ଶ݂ in 
order to make the analytical results not too complicated. At the end we shall comment on the effect 
of ଵ݂ ് ଶ݂.  

With the ݔ-axis along the average orientation of the long molecular axis, the anisotropic traceless 
tensor is: 

௘௜ܨ ൌ ቌ
െ2 ଵ݂ 0 0
0 ଵ݂ 0
0 0 ଵ݂

ቍ			. 

Because the long molecular axis rotates, for example, along the ݖ axis (see Fig. S5(c)), the tensorial 
dispersion correction in the laboratory frame is obtained as  

ܨ ൌ  ,			௘௜ܴܨ்ܴ
where ܴ is a rotation matrix: 

ܴ ൌ ൭
cosሺݍ଴ݖሻ sinሺݍ଴ݖሻ 0
െ sinሺݍ଴ݖሻ cosሺݍ଴ݖሻ 0

0 0 1
൱		. 

  is the wave vector of the nematic director modulation and its magnitude is half the magnitude	଴ݍ
of the lattice wave vector ݍ௟. We find (omitting all the irrelevant factors) that the dispersion 
correction to the form factor due to the helical rotation of the long molecular axis along the ݖ 
direction (ܨ௭ሻ is: 

௭ܨ ൌ ଵ݂

ۉ

ۈ
ۇ
െδሺݍ௭ሻ െ

3
2
	δሺݍ௭ േ ௟ሻݍ േ

3
2
݅	δሺݍ௭ േ ௟ሻݍ 0

േ
3
2
݅	δሺݍ௭ േ ௟ሻݍ െδሺݍ௭ሻ ൅

3
2
	δሺݍ௭ േ ௟ሻݍ 0

0 0 ی௭ሻݍሺߜ2

ۋ
ۊ
			. 

The dispersion correction depends only on the ݖ component of the scattering vector and it is 
different from zero only for ݈ ൌ 0 or ݈ ൌ 1. Similarly, we find the dispersion correction due to the 
rotation along the ݔ (ܨ௫) and ݕ direction (ܨ௬). The dispersion correction to the form factor (ܨ௛௞௟ሻ 
of the unit cell is:  
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௛௞௟ܨ ൌ ሺ݄ሻ݁௜గ௞	௫ܨ ൅ ௬ሺ݇ሻ݁௜గ௟ܨ ൅  .			௭ሺ݈ሻ݁௜గ௛ܨ

The full expression of ܨ௤ is too comprehensive to be written in full, so we give some specific 

examples. First, we point out, that the resonant scattering should give one peak, which is forbidden 
in the elastic scattering, the ሺ0,0,1ሻ peak. We also point out that those peaks, which have at least 
one of the Miller indices either 0 or 1, are resonantly enhanced, because this is the required 
condition for at least one dispersion correction to the form factor (ܨ௫, ܨ௬ or ܨ௭) to be different from 

zero. 
 
Blue phase I: 

We shall now repeat the above-described procedure to calculate the elastic and resonant peaks of 
the BPI phase. The schematic presentation of the BPI is shown in Fig. S6. To calculate the peaks 
allowed by the elastic x-ray scattering we again represent the structure of the double twist cylinders 
and defects as lines of a non-zero electron density and find: 

௖ܨ ൌ
1
݄
൫െ1 ൅ ݁ଶ௜௛గ൯ ൬݁

௜௞గ
ଶ ൅ ݁

ଵ
ଶ௜ሺଷ௞ାଶ௟ሻగ൰ ൅

1
݇
൫െ1 ൅ ݁ଶ௜௞గ൯ ൬݁

ଷ௜௟గ
ଶ ൅ ݁

ଵ
ଶ௜ሺଶ௛ା௟ሻగ൰ 

൅
1
݈
൫െ1 ൅ ݁ଶ௜௟గ൯ ൬݁

௜௛గ
ଶ ൅ ݁

ଵ
ଶ௜ሺଷ௛ାଶ௞ሻగ൰ 

and 

ௗܨ ൌ െ
݅൫݁௜௛గ െ ݁௜൫ି௛ାଶሺ௞ା௟ሻ൯గ൯

2ሺ݄ െ ݇ െ ݈ሻߨ
െ
݅൫݁ଶ௜ሺ௛ା௞ሻగ െ ݁ଶ௜௟గ൯
2ሺ݄ ൅ ݇ െ ݈ሻߨ

൅
݅൫݁௜ሺଶ௞ା௟ሻగ െ ݁௜ሺଶ௛ାଷ௟ሻగ൯

2ሺ݄ െ ݇ ൅ ݈ሻߨ

൅
݅൫݁௜௞గ െ ݁௜൫௞ାଶሺ௛ା௞ା௟ሻ൯గ൯

2ሺ݄ ൅ ݇ ൅ ݈ሻߨ
				. 

 
The peaks allowed by the symmetry of the BPI phase are given in Table S1. 

 
Fig. S6. Structure of the BPI phase. In the calculation of the form factor of the unit cell the (a) cylinders 
and (b) defects are represented by lines. (c) In the calculation of the tensorial correction to the form factor 
we consider spatial variation of the director in the direction perpendicular to the cylinder long axis.   
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 To calculate the allowed resonant peaks we repeat the procedure used for the BPII phase, taking 
into account the positions of the helical double twist cylinders in the BPI phase. An excellent 
presentation of the structure in the BPI phase is available in the video clip [7]. There, it can be 
seen, that at each crossing of two cylinders there is a helical deformation of the orientation of long 
molecular axes. The long molecular axis rotates by ߨ when moving from the surface of one 
cylinder to the surface of the other one (see Fig.S 6(c)). So, the major difference with the BPII 
phase is, that now we do not have infinite helices, but several half-pitch helices in each unit cell.  

To calculate the dispersion correction to the form factor of the unit cell there are a few more 
points to be considered. In calculating the traceless anisotropy tensor in the laboratory system for 
the helices along the ݕ ,ݔ and ݖ axis, we follow the procedure given for the BPII phase. If the long 

molecular axis rotates around the ݖ-direction, the rotation angle (߮௭) is expressed as ߮௭ ൌ േ
గ

ସ
െ

 ,଴ (noteݍ/ߨ runs from 0 to ݖ and in the integration (when calculating the Fourier transform) ݖ଴ݍ
that in the BPI phase ݍ଴ ൌ  ௟ሻ. By choosing the orientation of the molecules in one cylinder, weݍ
have defined the orientation of molecules in all cylinders. In addition, we choose, that the rotations 
along the ݖ axis are clockwise, and that the orientation of the long molecular axis is along the ݔ 
axis if ߮௭ ൌ 0. 

Similarly, for the helices along the ݔ axis, we set ߮௫ ൌ 0 for the long molecular axis along the 

axis and then find that the rotation is clock-wise, thus ߮௫ ݕ ൌ 	േ
గ

ସ
െ  For the helices along .ݔ଴ݍ

the	ݕ axis, the long molecular axis is along the ݖ axis at ߮௬ ൌ 0, the rotation is anticlock-wise and 

߮௬ ൌ േ஠

ସ
൅  .ݕ଴ݍ

There are 12 helices in one unit cell. For each one of them the initial ߮, which is either 4/ߨ or 
െ4/ߨ, has to be determined and then the phase factor due to the position of the helix has to be 
added to the proper form factor. Finally, we obtain the dispersion correction (ܨ௛௞௟) to the form 
factor: 

௛௞௟ܨ ൌ ௫ܨ
ሺିሻ	൫݁ଶ௜గሺ௛ ଼⁄ ା଴ ଼⁄ ௞ାଶ ଼⁄ ௟ሻ ൅ ݁ଶ௜గሺହ௛ ଼⁄ ାସ ଼⁄ ௞ା଺ ଼⁄ ௟ሻ൯

൅ ௫ܨ
ሺାሻ൫݁ଶ௜గሺି௛ ଼⁄ ା଴ ଼⁄ ௞ା଺ ଼⁄ ௟ሻ ൅ ݁ଶ௜గሺଷ௛ ଼⁄ ାସ ଼⁄ ௞ାଶ ଼⁄ ௟ሻ൯

൅ ௭ܨ
ሺାሻ൫݁ଶ௜గሺସ௛ ଼⁄ ାଶ ଼⁄ ௞ିଵ ଼⁄ ௟ሻ ൅ ݁ଶ௜గሺ଴௛ ଼⁄ ା଺ ଼⁄ ௞ାଷ ଼⁄ ௟ሻ൯

൅ ௭ܨ
ሺିሻ൫݁ଶ௜గሺସ௛ ଼⁄ ା଺ ଼⁄ ௞ାଵ ଼⁄ ௟ሻ ൅ ݁ଶ௜గሺ଴௛ ଼⁄ ାଶ ଼⁄ ௞ାହ ଼⁄ ௟ሻ൯

൅ ௬ܨ
ሺାሻ൫݁ଶ௜గሺ଺௛ ଼⁄ ାଵ ଼⁄ ௞ା଴ ଼⁄ ௟ሻ ൅ ݁ଶ௜గሺଶ௛ ଼⁄ ାହ ଼⁄ ௞ାସ ଼⁄ ௟ሻ൯

൅ ௬ܨ
ሺିሻ൫݁ଶ௜గሺ଺௛ ଼⁄ ାଷ ଼⁄ ௞ାସ ଼⁄ ௟ሻ ൅ ݁ଶ௜గሺଶ௛ ଼⁄ ିଵ ଼⁄ ௞ା଴ ଼⁄ ௟ሻ൯			, 

where ܨ௫,௬,௭ are the Fourier transforms of the helices along the ݕ ,ݔ and ݖ axis, respectively, and 

the index + or – denotes the helix, in which the initial  ߮ is 4/ߨ or െ4/ߨ, respectively. The 
expression for ܨ௫ is: 
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௫ܨ
ሺേሻ ൌ ൮

ଵଵܨ
ሺേሻ 0 0

0 ଶଶܨ
ሺേሻ ଶଷܨ

ሺേሻ

0 ଶଷܨ
ሺേሻ ଷଷܨ

ሺേሻ

൲ 

with 

ଵଵܨ
ሺേሻ ൌ ଵ݂ 	

݅൫1 െ ݁௜௛గ൯
݄

			, 

ଶଶܨ
ሺേሻ ൌ ݅ ଵ݂

൫1 െ ݁௜௛గ൯ሺെ4 േ 6݄݅ ൅ ݄ଶሻ

2݄ሺ4 െ ݄ଶሻ
			, 

ଶଷܨ
ሺേሻ ൌ ଶଷܨ

ሺേሻ ൌ േ3݅ ଵ݂
൫1 െ ݁௜௛గ൯݄
2ሺ4 െ ݄ଶሻ

			, 

ଷଷܨ
ሺേሻ ൌ ݅ ଵ݂

൫1 െ ݁௜௛గ൯ሺെ4 ∓ 6݄݅ ൅ ݄ଶሻ

2݄ሺ4 െ ݄ଶሻ
			. 

Therefore, ܨ௫
ሺേሻ depends only on the Miller index ݄. The expressions for the other two tensors can 

be deduced from the above expressions:	݄ has to be replaced by ݇ or ݈ and the zeros are in the 
second or third line of the tensor. 

In the BPI phase, the purely resonant peak (the peak not allowed by the 4ܫଵ32 symmetry) is the 
ሺ002ሻ peak. The rest of the signals are allowed by the 4ܫଵ32 symmetry, but are observed only in 
the resonant x-ray scattering due to the resonant enhancement: ሺ011ሻ, ሺ211ሻ, ሺ022ሻ, ሺ222ሻ, 
ሺ321ሻ. However, not all the signals allowed by the 4ܫଵ32 symmetry that are observed in the 
resonant experiment are resonantly enhanced, e.g. the ሺ031ሻ signal. The presence of a very week 
(031) signal in the RSoXS pattern might indicate that there is some distortion of the helical 
structure of the double twist cylinders.  

Next, we study the effect of the polarization of the incident beam on the intensity of the scattered 
beam. As before, we choose the direction of the incident beam to be along the ݕ axis and is 
polarized along the ݔ axis. For the scattered light with the ݍറ-vector lying in the ݖݕ plane, the 
incident beam is ߪ-polarized, for ݍറ in the ݕݔ plane it is ߨ-polarized and for all the other direction 
both ߪ and ߨ components are present. To obtain the amplitudes of the scattered light the procedure 
is more comprehensive than in the case of the modulated nematic phase. To show it, we consider 
the ሺ002ሻ peak as an example. The multiplicity of this peak is 6: ሺ00 േ 2ሻ, ሺ0 േ 20ሻ and ሺേ200ሻ. 
First, we calculate the dispersion correction of a given peak and for the positive values of the Miller 
index 2 we find:  

଴଴ଶܨ ൌ ଵ݂ ൭
െ3 ݅ 0
݅ 3 0
0 0 0

൱	, ଴ଶ଴ܨ	 ൌ ଵ݂ ൭
3 0 ݅
0 0 0
݅ 0 െ3

൱	, ଶ଴଴ܨ	 ൌ ଵ݂ ൭
0 0 0
0 െ3 ݅
0 ݅ 3

൱		. 

To have the ݍറ vector along the ݔ,  axis, one should choose a proper direction of the incident ݖ or ݕ
beam. Since we have fixed the direction of the incident beam, we have to find those crystals in the 
powder sample, that will have their local ݔ,  ௛௞௟ܨ axis (for which the above expressions of ݖ or ݕ
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apply) at a proper angle with respect to the direction of the incoming beam. The directions of these  
 ଴ and ߮଴, defining the angle between theߠ റሺ݄݈݇ሻ in the laboratory system are defined by anglesݍ
laboratory ݖ axis and ݍറሺ݄݈݇ሻ and the ݕ axis and ݍറሺ݄݈݇ሻ, respectively. For ݍറሺ002ሻ both angles are 
zero, for ݍറሺ020ሻ ߮଴ ൌ 0 and ߠ଴ ൌ റሺ200ሻ ߮଴ݍ and for 2/ߨ ൌ ଴ߠ and 2/ߨ ൌ  We thus have .2/ߨ
to rotate the ܨ௛௞௟ tensor by  

௛௞௟ܨ
ᇱ ൌ ܴఏబ

் ൫ܴఝబ
்  ,		௛௞௟ܴఝబ൯ܴఏబܨ

where 

ܴఝబ ൌ ൭
cos߮଴ sin߮଴ 0
െ sin߮଴ cos߮଴ 0

0 0 1
൱ 

and 

ܴఏబ ൌ

ۉ

ۈ
ۇ

1 0 0

0 cos ൬
௦௖ߠ
2
൅ ଴൰ߠ sin ൬

௦௖ߠ
2
൅ ଴൰ߠ

0 െ sin ൬
௦௖ߠ
2
൅ ଴൰ߠ cos ൬

௦௖ߠ
2
൅ ی଴൰ߠ

ۋ
ۊ
			. 

 
As in the case of modulated nematics, for the beam scattered at the azimuthal angle ߙ (see Fig. 
S2), the ߪ and ߨ components of the incident beam are: 

റ௜௡ߪ ൌ ሺcos ߙ , 0,0ሻ		, 
ሬറ௜௡ߨ ൌ ሺ0,0, sin  .		ሻ	ߙ

For the scattered beam the directions of the ߪ and ߨ component are: 

റ௦௖ߪ ൌ ሺ1,0,0ሻ			, 
ሬറ௦௖ߨ ൌ ሺ0,െ sin ௦௖ߠ , cos  	,		ሻ	௦௖ߠ

where the magnitude of the scattering angle depends on the chosen peak. The intensity of the 
scattered peak is now calculated following the procedure given in previous section. In the case of 
the ሺ002ሻ peak there are 6 contributions to the intensity of this peak and they are all the same. In 
general, these contributions can be different. For example, in the case of the ሺ112ሻ peak, which 
has a multiplicity of 24, the contribution of the ሺ112ሻ peak is different from the contributions of 
the ሺ211ሻ and ሺ121ሻ peaks. 

Figure S7 gives the intensity of the peaks ሺ011ሻ, ሺ002ሻ and ሺ112ሻ, i.e. the peaks with the lowest 
magnitudes of ݍ, as a function of the azimuthal angle at ଵ݂ଶ ൌ 1 (the ratio used in the above 
presented calculation) and ଵ݂ଶ ൌ 0.7. It can be seen that the polarization dependence of the ሺ112ሻ 
peak depends on the value of ଵ݂ଶ. If ଵ݂ଶ ൏ 0.8, the ሺ112ሻ peak has the same azimuthal intensity 
dependence as the peaks ሺ011ሻ and ሺ002ሻ, which is in agreement with the experimental 

observations (see Fig. 3 in main text). The integrated intensity (ܫሺ௜௡௧ሻ) of the ሺ002ሻ peak is higher 
than for the ሺ011ሻ peak, but they are still of the same order of magnitude: at ଵ݂ଶ ൌ 1, the ratio is 
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଴଴ଶܫ
ሺ௜௡௧ሻ/ܫ଴ଵଵ

ሺ௜௡௧ሻ ൌ 1.4, at ଵ݂ଶ ൌ 0.7, the ratio is ܫ଴଴ଶ
ሺ௜௡௧ሻ/ܫ଴ଵଵ

ሺ௜௡௧ሻ ൌ 1.6. Experimentally, the integrated 

intensity of the ሺ011ሻ peak is higher than ܫሺ௜௡௧ሻ of the ሺ002ሻ peak, but still of the same order of 
magnitude. Because of the crudeness of the model one can expect only qualitative agreement, so 
we do not find this discrepancy disturbing. The integrated intensity of the ሺ112ሻ peak is the lowest, 
which agrees with experimental observations. 

 

 
Fig. S7. The intensity (ܫሻ in arbitrary units (au) as a function of the azimuthal angle for the peaks ሺ011ሻ, 
ሺ002ሻ and ሺ112ሻ, which are the peaks with the lowest magnitudes of ݍ; (a) ଵ݂ଶ ൌ 1, (b) ଵ݂ଶ ൌ 0.7.  
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2. Materials and methods 

 
Materials: 

All the studied compounds are dimers with an odd number of atoms in the linkage between the 
mesogenic cores, which induces a bent molecular geometry. Two of them, AZO7 and SB3, are 
built from asymmetric molecules bearing a chiral, cholesteric unit, the third one, CB7CB, is a 
symmetric dimer (Fig. S8). The materials were synthesised at the University of Warsaw, the 
synthesis, purification and characterization was described previously [8]. 

 

 
Fig. S8. Molecular structure of the studied compounds, AZO7, SB3 and CB7CB. For each compound a 
phase sequence and phase transition temperatures determined by the differential scanning calorimetry 
(DSC) are given. Note, that for AZO7 a narrow range of a blue phase between the N* and Iso has been 
found by microscopic observations; however, it was not recorded on the DSC curves due to a limited 
resolution. Upon cooling the AZO7 samples, the blue phase was metastable down to the transition to the 
NTB phase and thus the cholesteric phase was not observed.  

 
Methods: 

The x-ray experiments were performed on the soft x-ray scattering beam line (11.0.1.2) at the 
Advanced Light Source of Lawrence Berkeley National Laboratory. The x-ray beam was tuned to 
the K-edge of carbon absorption, ~280	eV (Fig. S9).  

The x-ray beam with a cross-section of 300 × 200 μm was linearly polarized, with the 
polarization direction that can be continuously changed from the horizontal to vertical. Samples 
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with thickness lower than 1	ߤm were placed between two 100-nm-thick Si3N4 slides. The 
scattering intensity was recorded using the Princeton PI-MTE CCD detector, cooled to െ45°C, 
having a pixel size of 27	ߤm, with an adjustable distance from the sample. The detector was 
translated off axis to enable a recording of the diffracted x-ray intensity. The adjustable position 
of the detector allowed to cover a broad range of q vectors, corresponding to periodicities from 
approximately 5.0	– 	300	nm. 

 

 
Fig. S9. Intensity (ܫ) of the signal in the NTB phase as a function of the energy (ܧ) of the x-ray beam, 
measured for AZO7 compound.  

 
The AFM images were taken with the Bruker Dimension Icon microscope, working in the 

tapping mode at the liquid crystalline-air surface. Cantilevers with a low spring constant,              
݇	 ൌ 	0.4	N/m	were used, the resonant frequency was in a range of  70 െ 80	kHz, a typical scan 
frequency was 1	Hz. Samples for the AFM imaging were prepared in glass cells at elevated 
temperature, quenched to room temperature and unsealed. 
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3. Additional experimental results 
 
In both, the NTB and N* phase of chiral dimer SB3 the resonant diffraction signal shows only a 
weak temperature dependence (Fig. S10).  

For the achiral dimer CB7CB the heliconical structure changes critically when temperature 
approaches the transition to the non-modulated nematic phase, while in the crystalline phase the 
resonant signal related to the helical structure was found to be temperature independent                  
(Fig. S11). For the AZO7 material a direct transition from the BPI to NTB phase was observed on 
cooling, with a small temperature range in which both phases coexists (Fig. S12).  

The AFM image of SB3 recorded at the ambient temperature shows that an additional structure 
with a longer periodicity (50 െ 80	nm) is present in the NTB phase (Fig. S13). 

The AFM images taken at a room temperature of the crystalline and metastable NTB phase of 
CB7CB  are shown in Fig. S14. Both phases are characterized by ~8	nm periodicities, however 
in the case of a crystalline phase no focal conics were found. The fast Fourier transform (FFT) 
obtained from the image registered in the crystalline phase shows the first and second harmonic, 
and both are of almost equally intensity. On the other hand, the FFT obtained from the image 
registered in the NTB phase shows only the first harmonic. 

The position of the RSoXS signal in the NTB phase of the AZO7 compound is temperature 
dependent (Fig. S15). 

 

 
 

Fig. S10. Temperature dependence of the RSoXS pattern measured for SB3 compound in the temperature 
range of the (a) N* and (d) NTB phase. The patterns were obtained in the consecutive cooling/heating runs 
with modified experimental conditions (different detector position). (b) and (c) give the 2D RSoXS patterns 
taken in the N* and NTB phase, respectively. 
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Fig. S11. Temperature evolution of the RSoXS signal for the CB7CB sample, measured on heating. Note 
that while in the crystalline phase the signal position is practically temperature independent, in the NTB 
phase it changes strongly due to the changes of the heliconical pitch, from 8 to 10 nm upon approaching 
the transition to the N phase.  

 
Fig. S12. RSoXS patterns, scattered intensity (ܫ) in arbitrary units (au) as a function of the magnitude of 
the scattering vector ݍ, for the AZO7 compound recorded in a broad q range. On cooling, a direct transition 
from the BPI (black line) to the NTB phase (blue line) is observed with a small (1 K) temperature range of 
the phase coexistence (red line).  
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Fig. S13. AFM image taken in the NTB phase of SB3 compound at room temperature. The distance between 
the lines is approximately 50-80 nm.  
 

 

 
 
Fig. S14. AFM images of CB7CB in a crystal (left) and NTB (right) phase and the corresponding fast Fourier 
transform patterns. In the crystalline phase the intensity of the first and second harmonic of the detected 
periodicity (8.06 nm) is of the same order of magnitude. In the NTB phase only a weak first harmonic (7.93 
nm) is detected. 
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Fig. S15: RSoXS patterns, the intensity (ܫ) in arbitrary units as a function of the magnitude of the scattering 
vector ݍ, for the AZO7 compound in the NTB phase at three different temperatures. The inset: the q-range 
at which the 2q0 signal is expected (recorded with a different detector position).  
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